1Salena Abdul Abbas Naser, 2Mohammed Abdulrazzaq Assi, 3Shahad Saad Mohammed, 4Ali A. Al-fahham
1Technical Institute of Babylon, Al-Furat Al-Awsat Technical University (ATU), Iraq
2Department of Anesthesia Techniques, College of Health and Medical Techniques/ Baghdad, Middle Technical University, Iraq
3Technical Institute of Babylon, Al-Furat Al-Awsat Technical University (ATU), Iraq
4Corresponding Author, Faculty of Nursing, University of Kufa, Iraq
ABSTRACT:
Breast cancer (BC) has posed a significant threat to the general health of women globally, with its incidence and mortality rates showing a noticeable increase in China over time. Research indicates that the survival rate for early-stage breast cancer patients is significantly higher compared to those diagnosed at middle or late stages. Therefore, it is crucial to focus on research for the rapid diagnosis of breast cancer. Numerous diagnostic methods have been developed to date, primarily utilizing imaging and molecular biotechnology. These methods have greatly contributed to the diagnosis and follow up of BC. In this review article, a brief explanation has been introduced about the main laboratory methods that are recently used in the diagnosis of BC. It has been concluded that many diagnostic methods have been developed to detect breast cancer at different stages of the tumor. Some of these tests have been used to determine the appropriate chemotherapy method (e.g. molecular tests for gene changes), other are more generic in the determination of many tumor (e.g. complete blood count), while salivary methods are still controversial in the diagnosis of BC.
REFERENCES :
1) Andrikopoulou, A., Chatzinikolaou, S., Panourgias, E., Kaparelou, M., Liontos, M., Dimopoulos, M. A., & Zagouri, F. (2022). “The emerging role of capivasertib in breast cancer”. Breast (Edinburgh, Scotland), 63, 157–167. https://doi.org/10.1016/j.breast.2022.03.018
2) Barroso-Sousa, R., Pacífico, J. P., Sammons, S., & Tolaney, S. M. (2023). Tumor Mutational Burden in Breast Cancer: Current Evidence, Challenges, and Opportunities. Cancers, 15(15), 3997. https://doi.org/10.3390/cancers15153997
3) Dustin, D., Gu, G., & Fuqua, S. A. W. (2019). ESR1 mutations in breast cancer. Cancer, 125(21), 3714–3728. https://doi.org/10.1002/cncr.32345
4) He, Z., Chen, Z., Tan, M., Elingarami, S., Liu, Y., Li, T., Deng, Y., He, N., Li, S., Fu, J., & Li, W. (2020). A review on methods for diagnosis of breast cancer cells and tissues. Cell proliferation, 53(7), e12822. https://doi.org/10.1111/cpr.12822
5) Jiang, T., Wang, G., Liu, Y., Feng, L., Wang, M., Liu, J., Chen, Y., & Ouyang, L. (2021). Development of small-molecule tropomyosin receptor kinase (TRK) inhibitors for NTRK fusion cancers. Acta pharmaceutica Sinica. B, 11(2), 355–372.
https://doi.org/10.1016/j.apsb.2020.05.004
6) Jin, L., Zhao, W., Zhang, J., Chen, W., Xie, T., Wang, L., Fan, W., Xie, S., Shen, J., Zheng, H., Hu, W., Wei, Q., Dong, M., Wang, Q., Shen, J., & Liu, Y. (2020). Evaluation of the diagnostic value of circulating tumor cells with CytoSorter® CTC capture system in patients with breast cancer. Cancer medicine, 9(5), 1638–1647.
https://doi.org/10.1002/cam4.2825
7) Koopaie, M., Kolahdooz, S., Fatahzadeh, M., & Manifar, S. (2022). Salivary biomarkers in breast cancer diagnosis: A systematic review and diagnostic meta-analysis. Cancer medicine, 11(13), 2644–2661. https://doi.org/10.1002/cam4.4640
8) Krishnamurti, U., & Silverman, J. F. (2014). HER2 in breast cancer: a review and update. Advances in anatomic pathology, 21(2), 100–107.
https://doi.org/10.1097/PAP.0000000000000015
9) Leser, C., Dorffner, G., Marhold, M., Rutter, A., Döger, M., Singer, C., König-Castillo, D. M., Deutschmann, C., Holzer, I., König-Castillo, D., & Gschwantler-Kaulich, D. (2023). Liver function indicators in patients with breast cancer before and after detection of hepatic metastases-a retrospective study. PloS one, 18(3), e0278454.
https://doi.org/10.1371/journal.pone.0278454
10) Li, Z., Wei, H., Li, S., Wu, P., & Mao, X. (2022). The Role of Progesterone Receptors in Breast Cancer. Drug design, development and therapy, 16, 305–314.
https://doi.org/10.2147/DDDT.S336643
11) Liang, D., Liu, H., Yang, Q., He, Y., Yan, Y., Li, N., & You, W. (2023). Retracted: Long noncoding RNA RHPN1-AS1, induced by KDM5B, is involved in breast cancer via sponging miR-6884-5p. Journal of cellular biochemistry, 124(7), 1064.
https://doi.org/10.1002/jcb.29645
12) Lü, L., Sun, J., Shi, P., Kong, W., Xu, K., He, B., Zhang, S., & Wang, J. (2017). Identification of circular RNAs as a promising new class of diagnostic biomarkers for human breast cancer. Oncotarget, 8(27), 44096–44107.
https://doi.org/10.18632/oncotarget.17307
13) Ma, F., Guan, Y., Yi, Z., Chang, L., Li, Q., Chen, S., Zhu, W., Guan, X., Li, C., Qian, H., Xia, X., Yang, L., Zhang, J., Husain, H., Liao, Z., Futreal, A., Huang, J., Yi, X., & Xu, B. (2020). Assessing tumor heterogeneity using ctDNA to predict and monitor therapeutic response in metastatic breast cancer. International journal of cancer, 146(5), 1359–1368. https://doi.org/10.1002/ijc.32536
14) Mahdavi, M., Nassiri, M., Kooshyar, M. M., Vakili-Azghandi, M., Avan, A., Sandry, R., Pillai, S., Lam, A. K., & Gopalan, V. (2019). Hereditary breast cancer; Genetic penetrance and current status with BRCA. Journal of cellular physiology, 234(5), 5741–5750. https://doi.org/10.1002/jcp.27464
15) Mohammad, H. N. and Al-Fahham, A. A. (2021) Maternal Risk Factors in Women With Breast Cancer in Al-Najaf Province. Indian Journal of Forensic Medicine & Toxicology, 24;15(2):2458-63.
https://doi.org/10.37506/ijfmt.v15i2.14741
16) Obeagu, E. I., & Obeagu, G. U. (2024). Breast cancer: A review of risk factors and diagnosis. Medicine, 103(3), e36905. https://doi.org/10.1097/MD.0000000000036905
17) Schütz, F., Stefanovic, S., Mayer, L., von Au, A., Domschke, C., & Sohn, C. (2017). PD-1/PD-L1 Pathway in Breast Cancer. Oncology research and treatment, 40(5), 294–297. https://doi.org/10.1159/000464353
18) Seale, K. N., & Tkaczuk, K. H. R. (2022). Circulating Biomarkers in Breast Cancer. Clinical breast cancer, 22(3), e319–e331. https://doi.org/10.1016/j.clbc.2021.09.006
19) Shao, M., Ma, H., Wan, X., & Liu, Y. (2020). Survival analysis for long noncoding RNAs identifies TP53TG1 as an antioncogenic target for the breast cancer. Journal of cellular physiology, 235(10), 6574–6581. https://doi.org/10.1002/jcp.29517
20) Sinha T. (2018) Tumors: benign and malignant. Cancer Ther Oncol Int J.;10:555790
21) Sun, Y. S., Zhao, Z., Yang, Z. N., Xu, F., Lu, H. J., Zhu, Z. Y., Shi, W., Jiang, J., Yao, P. P., & Zhu, H. P. (2017). Risk Factors and Preventions of Breast Cancer. International journal of biological sciences, 13(11), 1387–1397. https://doi.org/10.7150/ijbs.21635
22) Wang, X., Kaczor-Urbanowicz, K. E., & Wong, D. T. (2017). Salivary biomarkers in cancer detection. Medical oncology (Northwood, London, England), 34(1), 7. https://doi.org/10.1007/s12032-016-0863-4
23) Xie, J., Guo, Z., Zhu, Y., Ma, M., & Jia, G. (2023). Peripheral blood inflammatory indexes in breast cancer: A review. Medicine, 102(48), e36315.
https://doi.org/10.1097/MD.0000000000036315
24) Yan, L., Zheng, M., & Wang, H. (2019). Circular RNA hsa_circ_0072309 inhibits proliferation and invasion of breast cancer cells via targeting miR-492. Cancer management and research, 11, 1033–1041.
https://doi.org/10.2147/CMAR.S186857
25) Yip, C. H., & Rhodes, A. (2014). Estrogen and progesterone receptors in breast cancer. Future oncology (London, England), 10(14), 2293–2301.
https://doi.org/10.2217/fon.14.110