Biochemistry and Clinical Significance of Il-3: A Review Article

  • Home
  • Biochemistry and Clinical Significance of Il-3: A Review Article

Biochemistry and Clinical Significance of Il-3: A Review Article

1 Khamael Hasan Obaid, 2Rasha A.H. Alathary, 3Seenaa Taqi Mansour Al muhtaser, 4Ali A. Al-fahham
1College of Applied Medical Sciences, University of Kerbala, Iraq
2Department of Pathological Analysis, College of Science, Al-Qadisiyah University, Iraq
3 Faculty of Pharmacy, University of Kufa, Iraq
4Faculty of Nursing, University of Kufa, Iraq



ABSTRACT:

Interleukin-3 (IL-3) is a cytokine of many activities, centrally important for hematopoiesis and regulation of immune responses. It is produced by activated T cells and mast cells with a large influence on blood cell lineage proliferation and differentiation. Given the biochemistry of IL-3, elucidating its role in health and disease—especially immune responses and pathological conditions—is a high priority. Interleukin-3 is a cytokine profoundly important in the regulation of hematopoiesis and immune responses. The ability of this factor to modulate a wide variety of cellular responses serves to underscore its central involvement in almost all physiological as well as pathological processes. In the present article, the authors summarize recent knowledge on the mechanisms by which IL-3 exerts biological effects, with special emphasis placed on receptor signaling, downstream pathways, and functional responses.

 
REFERENCES :

1) Balam, S., Schiechl-Brachner, G., Buchtler, S., et al. (2019). IL-3 Triggers Chronic Rejection of Cardiac Allografts by Activation of Infiltrating Basophils. Journal of Immunology, 202, 3514-3523.
2) Broughton, S.., Dhagat, U.., Hercus, T.., Nero, T.., Grimbaldeston, M.., Bonder, C.., Lopez, Angel F.., & Parker, M.. (2012). The GM–CSF/IL‐3/IL‐5 cytokine receptor family: from ligand recognition to initiation of signaling. Immunological Reviews , 250 , 277 – 302 . http://doi.org/10.1111/j.1600-065X.2012.01164.x
3) Broxmeyer, H.., Hoggatt, Jonathan., O’Leary, H.., Mantel, C.., Chitteti, B.., Cooper, S.., Messina-Graham, Steven., Hangoc, G.., Farag, S.., Rohrabaugh, Sara L.., Ou, X.., Speth, J.., Pelus, L.., Srour, E.., & Campbell, T.. (2012). Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nature Medicine , 18 , 1786-1796 . http://doi.org/10.1038/nm.2991
4) Esnault, S., & Kelly, E. A. (2016). Essential Mechanisms of Differential Activation of Eosinophils by IL-3 Compared to GM-CSF and IL-5. Critical Reviews in Immunology, 36(5), 429-444.
5) Frankel, A., Konopleva, M., Hogge, D., et al. (2013). Activity and tolerability of SL-401, a targeted therapy directed to the interleukin-3 receptor on cancer stem cells and tumor bulk, as a single agent in patients with advanced hematologic malignancies. Journal of Clinical Oncology, 31, 7029-7029.
6) Gupta, N., Barhanpurkar, A. P., Tomar, G., et al. (2010). IL-3 Inhibits Human Osteoclastogenesis and Bone Resorption through Downregulation of c-Fms and Diverts the Cells to Dendritic Cell Lineage. Journal of Immunology, 185, 2261-2272.
7) He, S.., Liang, Yuqiong., Shao, F.., & Wang, Xiaodong. (2011). Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3–mediated pathway. Proceedings of the National Academy of Sciences , 108 , 20054 – 20059 . http://doi.org/10.1073/pnas.1116302108
8) Kitamura, H.., Ohno, Yosuke., Toyoshima, Yujiro., Ohtake, J.., Homma, S.., Kawamura, H.., Takahashi, N.., & Taketomi, A.. (2017). Interleukin‐6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Science , 108 , 1947 – 1952 . http://doi.org/10.1111/cas.13332
9) Lopatina, T., Koni, M., Grange, C., et al. (2022). IL-3 Signalling in the Tumour Microenvironment Shapes the Immune Response via Tumour Endothelial Cell-Derived Extracellular Vesicles. Pharmacological Research, 106206.
10) Ridker, P.., & Rane, Manas. (2021). Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circulation Research , 128 , 1728 – 1746 . http://doi.org/10.1161/CIRCRESAHA.121.319077
11) Russell, C.., Unger, Stefan A.., Walton, M.., & Schwarze, J.. (2017). The Human Immune Response to Respiratory Syncytial Virus Infection. Clinical Microbiology Reviews , 30 , 481 – 502 . http://doi.org/10.1128/CMR.00090-16
12) Sakuishi, K.., Apetoh, L.., Sullivan, Jenna M.., Blazar, B.., Kuchroo, V.., & Anderson, A.. (2010). Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. The Journal of Experimental Medicine , 207 , 2187 – 2194 . http://doi.org/10.1084/jem.20100643
13) Testa, U., Pelosi, E., & Castelli, G. (2019). CD123 as a Therapeutic Target in the Treatment of Hematological Malignancies. Cancers, 11.
14) Vallée, Alexandre., & Lecarpentier, Y.. (2018). Crosstalk Between Peroxisome Proliferator-Activated Receptor Gamma and the Canonical WNT/β-Catenin Pathway in Chronic Inflammation and Oxidative Stress During Carcinogenesis. Frontiers in Immunology , 9 . http://doi.org/10.3389/fimmu.2018.00745
15) Vandooren, J.., Steen, P. E. Van den., & Opdenakker, G.. (2013). Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): The next decade. Critical Reviews in Biochemistry and Molecular Biology , 48 , 222 – 272 . http://doi.org/10.3109/10409238.2013.770819
16) Walsh, M.., Lee, JangEun., & Choi, Yongwon. (2015). Tumor necrosis factor receptor‐ associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunological Reviews , 266 . http://doi.org/10.1111/imr.12302
17) Wang, Jin., Jiang, Mengmeng., Chen, Xin., & Montaner, L.. (2020). Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. Journal of Leukocyte Biology , 108 , 17 – 41 . http://doi.org/10.1002/JLB.3COVR0520-272R
18) Wang, Lei., Wen, Mingyue., & Cao, Xuetao. (2019). Nuclear hnRNPA2B1 initiates and amplifies the innate immune response to DNA viruses. Science , 365 . http://doi.org/10.1126/science.aav0758
19) Weber, G.., Chousterman, B.., He, Shun., Fenn, A.., Nairz, M.., Anzai, Atsushi., Brenner, T.., Uhle, F.., Iwamoto, Y.., Robbins, Clinton S.., Noiret, L.., Maier, Sarah L.., Zönnchen, Tina., Rahbari, N.., Schölch, S.., Ameln, A. Klotzsche-von., Chavakis, T.., Weitz, J.., Hofer, S.., Weigand, M.., Nahrendorf, M.., Weissleder, R.., & Swirski, F.. (2015). Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science , 347 , 1260 – 1265 . http://doi.org/10.1126/science.aaa4268
20) Willinger, T.., Rongvaux, A.., Takizawa, Hitoshi., Yancopoulos, G.., Valenzuela, D.., Murphy, A.., Auerbach, W.., Eynon, E.., Stevens, S.., Manz, M.., & Flavell, R.. (2011). Human IL-3/GM-CSF knock-in mice support human alveolar macrophage development and human immune responses in the lung. Proceedings of the National Academy of Sciences , 108 , 2390 – 2395 . http://doi.org/10.1073/pnas.1019682108
21) Zhang, Xiao-hui., Zeng, Yuanyuan., Qu, Qiu-Xia., Zhu, Jianjie., Liu, Zeyi., Ning, Weiwei., Zeng, Hui-chang., Zhang, Nan., Du, W.., Chen, Cheng., & Huang, Jian-an. (2017). PD-L1 induced by IFN-γ from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer. International Journal of Clinical Oncology , 22 , 1026-1033 . http://doi.org/10.1007/s10147-017-1161-7
22) Zhou, Qing., Munger, Meghan E.., Veenstra, Rachelle G.., Weigel, B.., Hirashima, M.., Munn, D.., Murphy, W.., Azuma, M.., Anderson, A.., Kuchroo, V.., & Blazar, B.. (2011). Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia.. Blood , 117 17 , 4501-10 . http://doi.org/10.1182/blood-2010-10-310425

  • Share

Leave a Reply

Your email address will not be published. Required fields are marked *