1Azhar Jasim Mohsin, 2Nadia Habeeb Sarhan, 3Hawraa Ghaleb Idreess
1Department of pharmacology and toxicology, Faculty of Pharmacy, University of Kufa, Iraq; ORCID: 0000-0002-8461-4119
2,3Department of Basic Science, Faculty of Nursing, University of Kufa, Iraq.;
ABSTRACT:
This research aimed to isolate and identify Staphylococcus aureus and Candida species from throat infections, as well as assess their antibiotic resistance. Samples were collected from both infected patients and healthy individuals, encompassing various ages and genders, in hospitals of Najaf province between December 2022 and March 2023. The findings revealed that S. aureus constituted 36.10% of isolates, followed by S. warneri at 22.81%, and S. lugdunensis at 15.29%. Notably, S. aureus isolates displayed 100% resistance to Penicillin (P), Aztreonam (ATM), and Oxacillin (OX), Amoxicillin (AMC) and Tetracycline (TE) exhibiting resistance rates of 81.95% and 78.19%, respectively. The study concluded that S. aureus was the predominant strain, followed by S. warneri. Antibiotic susceptibility testing on all S. aureus isolates (n=21) was conducted using seven selected antibiotics. Candida species identified included Candida albicans, Candida parapsilosis, and Candida glabrata, with maximum resistance observed against fluconazole (FLU) and polymyxin B (PB), followed by miconazole (MCL).
KEYWORDS:
Staphylococcus aureus, Candida, throat infections
REFERENCES :
1) Abdullahi, I. N., Lozano, C., Ruiz-Ripa, L., Fernández-Fernández, R., Zarazaga, M., & Torres, C. (2021). Ecology and Genetic Lineages of Throat Staphylococcus aureus and MRSA Carriage in Healthy Persons with or without Animal-Related Occupational Risks of Colonization: A Review of Global Reports. Pathogens, 10(8), 1000.
https://doi.org/10.3390/pathogens10081000
2) Al-Fahham, A.A. (2018) Development of New LSD Formula when Unequal Observations Numbers of Observations Are. Open Journal of Statistics, 8, 258-263.
https://doi.org/10.4236/ojs.2018.82016
3) Alwatar, W. M. A., AlFakar, S. A., Mohammed, K. I. A., Ali, S. H. M., Albayatee, A. F., Ahmed, S. J., & Yas, N. K. (2021). Mycosis of the Throat of a Group of Diabetes Mellitus, Leukemic and Some of ENT out Patient’s Clinic Iraqi Patients. Annals of the Romanian Society for Cell Biology, 25(6), 15533–15541.
4) Bartie, K. L., Williams, D. W., Wilson, M. J., Potts, A. J. C., & Lewis, M. A. O. (2004). Differential invasion of Candida albicans isolates in an in vitro model of oral candidosis. Oral Microbiology and Immunology, 19(5), 293–296.
https://doi.org/10.1111/J.1399-302X.2004.00155.X
5) Bassis, C. M., Tang, A. L., Young, V. B., & Pynnonen, M. A. (2014). The throat microbiota of healthy adults. Microbiome Journal, 2(27), 1–5.
6) Berkow, E. L., & Lockhart, S. R. (2017). Fluconazole resistance in Candida species: A current perspective. Infection and Drug Resistance, 10, 237–245.
https://doi.org/10.2147/IDR.S118892
7) Bhavan, P. S., Rajkumar, R., Radhakrishnan, S., Seenivasan, C., & Kannan, S. (2010). Culture and Identification of Candida albicans from Vaginal Ulcer and Separation of Enolase on SDS-PAGE. International Journal of Biology, 2(1), 84.
8) Budzyńska, A., Sadowska, B., Więckowska-Szakiel, M., & Różalska, B. (2014). Enzymatic profile, adhesive and invasive properties of Candida albicans under the influence of selected plant essential oils. Acta Biochimica Polonica, 61(1), 115–121.
https://doi.org/10.18388/ABP.2014_1932.
9) Cowen, L. E., Sanglard, D., Howard, S. J., Rogers, P. D., & Perlin, D. S. (2015). Mechanisms of antifungal drug resistance. Cold Spring Harbor Perspectives in Medicine, 5(7), a019752.
10) Dogramachy, N. (2018). Prevalence of throat carriage rate for methicillin-resistant Staphylococcus aureus and its antibiotic susceptibility profiles in health care workers at Nanakaly Hospital, Erbil, Iraq. Zanco Journal of Medical Sciences, 22(3), 411–419. https://doi.org/10.15218/zjms.2018.053.
11) Edomwande, E. C., Iluoje, M. I., Momoh, A. R. M., Isibor, J. O., & O, I. M. I. O. M. (2014). CO-Occurrence Of Candida Albicans And Staphylococcus Aureus In The Nostrils Of Apparently Healthy University Students : A Case Study 1 Orhue. 3(1), 30–33.
12) Ickrath, P., Sprügel, L., Beyersdorf, N., Scherzad, A., Hagen, R., & Hackenberg, S. (2021). Detection of candida albicans-specific cd4+ and cd8+ t cells in the blood and throat mucosa of patients with chronic throat infections. Journal of Fungi, 7(6).
https://doi.org/10.3390/jof7060403
13) Iyer, A., Kumosani, T., Azhar, E., Barbour, E., & Harakeh, S. (2014). High incidence rate of methicillin-resistant Staphylococcus aureus (MRSA) among healthcare workers in Saudi Arabia. Journal of Infection in Developing Countries, 8(3), 372–378. https://doi.org/10.3855/jidc.3589.
14) Jamalludeen, N. M. (2021). Throat carriage of staphylococcus aureus in healthy children and its possible bacteriophage isolates in basrah, Iraq. Biomedical and Pharmacology Journal, 14(1), 467–475. https://doi.org/10.13005/bpj/2146
15) Kumpitsch, C., Koskinen, K., Schöpf, V., & Moissl-Eichinger, C. (2019). The microbiome of the upper respiratory tract in health and disease. BMC Biology 2019 17:1, 17(1), 1–20. https://doi.org/10.1186/S12915-019-0703-Z
16) MacFaddin, J. F. (2000). Biochemical tests for identification of medical bacteria – Ghent University Library. 1–928.
17) Martins, N., Ferreira, I. C. F. R., Barros, L., Silva, S., & Henriques, M. (2014). Candidiasis: Predisposing Factors, Prevention, Diagnosis and Alternative Treatment. Mycopathologia 2014 177:5, 177(5), 223–240. https://doi.org/10.1007/S11046-014-9749-1
18) Mohajeri, P., Izadi, B., Rezaei, M., & Farahani, A. (2013). Frequency Distribution of Hospital-Acquired MRSA Throat Carriage Among Hospitalized Patients in West of Iran. Jundishapur Journal of Microbiology 2013 6:6, 6(6). https://doi.org/10.5812/JJM.9076
19) Nastri, M. L., Hecht, P., Nastri, N., Jewtuchowicz, V., Cuesta, A., Estrugo, J., Gualtieri, A., Sordelli, D. O., & Rosa, A. (2012). Throat carriage of Staphylococcus aureus and Candida species in immunocompetent individuals. Acta Odontológica Latinoamericana : AOL, 25(3), 324–329.
20) Nilsson, P., & Ripa, T. (2006). Staphylococcus aureus throat colonization is more frequent than colonization in the anterior nares. Journal of clinical microbiology, 44(9), 3334–3339. https://doi.org/10.1128/JCM.00880-06
21) Rasheed, N. A., & Hussein, N. R. (2020). Characterization of different virulent factors in methicillin-resistant Staphylococcus aureus isolates recovered from Iraqis and Syrian refugees in Duhok city, Iraq. PLoS ONE, 15(8 August), 1–10.
https://doi.org/10.1371/journal.pone.0237714
22) Sakr, A., Brégeon, F., Mège, J.-L., Rolain, J.-M., & Blin, O. (2018). Staphylococcus aureus Throat Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Frontiers in Microbiology, 9(OCT).
https://doi.org/10.3389/FMICB.2018.02419
23) Steed, L. L., Costello, J., Lohia, S., Jones, T., Spannhake, E. W., & Nguyen, S. (2014). Reduction of throat Staphylococcus aureus carriage in health care professionals by treatment with a nonantibiotic, alcohol-based throat antiseptic. American Journal of Infection Control, 42(8), 841–846. https://doi.org/10.1016/j.ajic.2014.04.008.
24) Teeba T. Kudair, Mohammed Hashim Al-yasiri, & Ahmed K. Atya. (2021). Characterization of Pathogens Community in Women with Vaginal Infections. University of Najaf Journal of Science, 8(1), 77-81. Retrieved from
https://jsci.utq.edu.iq/index.php/main/article/view/764
25) Williams, D. W., & Lewis, M. (2000). Isolation and identification of candida from the oral cavity. Oral Diseases, 6(1), 3–11.
https://doi.org/10.1111/j.1601-0825.2000.tb00314.x
26) Zainab Dakhil Degaim, Wafaa Sadoon Shani, & Saad Salman Hamim. (2020). Histopathological Changes of Two Antigens Prepared from Methicillin-Resistant Staphylococcus aureus in Rats. University of Najaf Journal of Science, 7(2), 54-59. Retrieved from https://jsci.utq.edu.iq/index.php/main/article/view/712
27) Zondervan, N. A., Martins dos Santos, V. A. P., Suarez-Diez, M., & Saccenti, E. (2021). Phenotype and multi-omics comparison of Staphylococcus and Streptococcus uncovers pathogenic traits and predicts zoonotic potential. BMC Genomics 2021 22:1, 22(1), 1–21. https://doi.org/10.1186/S12864-021-07388-6.