An Overview of The Effects of Indoor Fungi on Human Health

  • Home
  • An Overview of The Effects of Indoor Fungi on Human Health

An Overview of The Effects of Indoor Fungi on Human Health

ALI A ALSUDANI
Environmental Research and Pollution Prevention Unit, College of Science, University of Al-Qadisiyah, Iraq



ABSTRACT:

According to estimates, concerns about the quality of indoor air may be present in as many as 30% of buildings globally. Both organic and inorganic particles are potential air pollution sources. This article focuses on biological air pollutants originating from living and non-living organisms, particularly those related to fungi. Domestic house indoor air contains fungi that, to a significant extent, share the same species composition as those outside the building. When rooms are ventilated or through other openings, microorganisms enter buildings where they can grow on the surfaces of a variety of materials. Intensely grows in stuffy, humid, poorly ventilated areas. For this reason, residents may experience more discomfort from exposure to interior air pollution than they would from exposure to outside air contaminants. Due to their propensity to produce mycotoxins, allergic reactions, volatile organic chemicals, and even fungal illnesses, fungi can be extremely dangerous when found in residential buildings.


KEYWORDS:

Indoor fungi, Allergies, Volatile Compounds, Mycotoxins.


REFERENCES :

1) Kim, S., & Paulos, E. (2010, April). InAir: sharing indoor air quality measurements and visualizations. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 1861-1870).
2) Chokor, A., El Asmar, M., Tilton, C., & Srour, I. (2016). Dual assessment framework to evaluate LEED-certified facilities’ occupant satisfaction and energy performance: Macro and micro approaches. Journal of Architectural Engineering, 22(4), A4015003.
3) Hänninen, O. O. (2011). WHO guidelines for indoor air quality: dampness and mold. Fundamentals of mold growth in indoor environments and strategies for healthy living, 277-302.
4) Pekkanen, J., Hyvärinen, A., Haverinen-Shaughnessy, U., Korppi, M., Putus, T., & Nevalainen, A. (2007). Moisture damage and childhood asthma: a population-based incident case–control study. European Respiratory Journal, 29(3), 509-515.
5) Reiss, R., Anderson, E. L., Cross, C. E., Hidy, G., Hoel, D., McClellan, R., & Moolgavkar, S. (2007). Evidence of health impacts of sulfate-and nitrate-containing particles in ambient air. Inhalation toxicology, 19(5), 419-449.
6) Nazaroff, W. W. (2016). Indoor bioaerosol dynamics. Indoor air, 26(1), 61-78.
7) Karbowska-Berent, J., Górny, R. L., Strzelczyk, A. B., & Wlazło, A. (2011). Airborne and dust borne microorganisms in selected Polish libraries and archives. Building and Environment, 46(10), 1872-1879.
8) Prussin, A. J., & Marr, L. C. (2015). Sources of airborne microorganisms in the built environment. Microbiome, 3, 1-10.
9) Gołofit‐Szymczak, M., & Górny, R. L. (2018). Microbiological air quality in office buildings equipped with dventilation systems. Indoor air, 28(6), 792-805.
10) Adams, R. I., Miletto, M., Taylor, J. W., & Bruns, T. D. (2013). Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. The ISME journal, 7(7), 1262-1273.
11) Cabral, J. P. (2010). Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions. Science of the total environment, 408(20), 4285-4295.
12) Brambilla, A., & Sangiorgio, A. (2020). Mould growth in energy efficient buildings: Causes, health implications and strategies to mitigate the risk. Renewable and Sustainable Energy Reviews, 132, 110093.
13) Żukiewicz-Sobczak, W. A. (2013). The role of fungi in allergic diseases. Advances in Dermatology and Allergology/Postępy Dermatologii i Alergologii, 30(1), 42-45.
14) Kurup, V. P., Shen, H. D., & Banerjee, B. (2000). Respiratory fungal allergy. Microbes and infection, 2(9), 1101-1110.
15) Shin, S. H., Ye, M. K., Lee, D. W., & Geum, S. Y. (2023). Immunopathologic role of fungi in chronic rhinosinusitis. International Journal of Molecular Sciences, 24(3), 2366.
16) Denham, S. T., Wambaugh, M. A., & Brown, J. C. (2019). How environmental fungi cause a range of clinical outcomes in susceptible hosts. Journal of molecular biology, 431(16), 2982-3009. 
17) Dispenza, M. C. (2019, November). Classification of hypersensitivity reactions. In Allergy & Asthma Proceedings (Vol. 40, No. 6).
18) Borchers, A. T., Chang, C., & Eric Gershwin, M. (2017). Mold and human health: A reality check. Clinical reviews in allergy & immunology, 52(3), 305-322.
19) Eickmeier, O., Zissler, U. M., Wittschorek, J., Unger, F., Schmitt‐Grohé, S., Schubert, R., & Zielen, S. (2020). Clinical relevance of Aspergillus fumigatus sensitization in cystic fibrosis. Clinical & Experimental Allergy, 50(3), 325-333.
20) Gamaletsou, M. N., Rammaert, B., Brause, B., Bueno, M. A., Dadwal, S. S., Henry, M. W., & Walsh, T. J. (2022). Osteoarticular Mycoses. Clinical Microbiology Reviews, 35(4), e00086-19.
21) Bernatchez, E., Gold, M. J., Langlois, A., Blais‐Lecours, P., Boucher, M., Duchaine, C., & Blanchet, M. R. (2017). Methanosphaera stadtmanae induces a type IV hypersensitivity response in a mouse model of airway inflammation. Physiological reports, 5(7), e13163.
22) Hussain, H. H., Ibraheem, N. T., Al-Rubaey, N. K. F., Radhi, M. M., Hindi, N. K. K., & AL-Jubori, R. H. K. (2022). A review of airborne contaminated microorganisms associated with human diseases. Medical Journal of Babylon, 19(2), 115-122.
23) Bardei, F., Bouziane, H., Trigo, M. D. M., Ajouray, N., El Haskouri, F., & Kadiri, M. (2017). Atmospheric concentrations and intradiurnal pattern of Alternaria and Cladosporium conidia in Tétouan (NW of Morocco). Aerobiologia, 33, 221-228.
24) Pottier, D., Andre, V., Rioult, J. P., Bourreau, A., Duhamel, C., Bouchart, V. K., & Garon, D. (2014). Airborne molds and mycotoxins in Serpula lacrymans–damaged homes. Atmospheric Pollution Research, 5(2), 325-334.
25) Tatiana, O., & Berezovskaya, E. (2019). Infectious allergy, causes, symptoms, treatment. Treatment of bacterial allergies Is there a risk of purchasing low-quality products?.
26) Christiani, D. C. (2021). Ambient air pollution and lung cancer: nature and nurture. American Journal of Respiratory and Critical Care Medicine, 204(7), 752-753.
27) Shams, M. R., & Epstein, T. E. (2019). Controlling Triggers for Asthma in Older Adults: Environmental Allergens, Indoor and Outdoor Air Pollutants, and Infection. Treatment of Asthma in Older Adults: A Comprehensive, Evidence-Based Guide, 119-134.
28) Arcangeli, G., Traversini, V., Tomasini, E., Baldassarre, A., Lecca, L. I., Galea, R. P., & Mucci, N. (2020). Allergic anaphylactic risk in farming activities: a systematic review. International Journal of Environmental Research and Public Health, 17(14), 4921.
29) Mari, M., Bautista-Banos, S., & Sivakumar, D. (2016). Decay control in the postharvest system: Role of microbial and plant volatile organic compounds. Postharvest Biology and Technology, 122, 70-81.
30) Boor, B. E., Spilak, M. P., Laverge, J., Novoselac, A., & Xu, Y. (2017). Human exposure to indoor air pollutants in sleep microenvironments: A literature review. Building and Environment, 125, 528-555.
31) Nag, P. K. (2018). Sick building syndrome and other building-related illnesses. In Office Buildings: Health, Safety and Environment (pp. 53-103). Singapore: Springer Singapore.
32) Cai, G., & Waldmann, D. (2019). A material and component bank to facilitate material recycling and component reuse for a sustainable construction: Concept and preliminary study. Clean Technologies and Environmental Policy, 21, 2015-2032.
33) Moura, P. C., & Vassilenko, V. (2023). Contemporary ion mobility spectrometry applications and future trends towards environmental, health and food research: A review. International Journal of Mass Spectrometry, 117012.
34) Suchorab, Z., Frąc, M., Guz, Ł., Oszust, K., Łagód, G., Gryta, A., & Czerwiński, J. (2019). A method for early detection and identification of fungal contamination of building materials using e-nose. PLoS One, 14(4), e0215179.
35) Ogbodo, J. O., Arazu, A. V., Iguh, T. C., Onwodi, N. J., & Ezike, T. C. (2022). Volatile organic compounds: A proinflammatory activator in autoimmune diseases. Frontiers in Immunology, 13, 928379.
36) Kemboi, D. C., Antonissen, G., Ochieng, P. E., Croubels, S., Okoth, S., Kangethe, E. K., & Gathumbi, J. K. (2020). A review of the impact of mycotoxins on dairy cattle health: Challenges for food safety and dairy production in sub-Saharan Africa. Toxins, 12(4), 222.
37) Collinge, D. B., Jensen, D. F., Rabiey, M., Sarrocco, S., Shaw, M. W., & Shaw, R. H. (2022). Biological control of plant diseases–What has been achieved and what is the direction?. Plant Pathology, 71(5), 1024-1047.
38) Nguyen, P. A., Strub, C., Fontana, A., & Schorr-Galindo, S. (2017). Crop molds and mycotoxins: Alternative management using biocontrol. Biological Control, 104, 10-27.
39) Gurikar, C., Shivaprasad, D. P., Sabillón, L., Gowda, N. N., & Siliveru, K. (2022). Impact of mycotoxins and their metabolites associated with food grains. Grain & Oil Science and Technology.
40) Girisham, S., Rao, V. K., & Reddy, S. M. (2017). Taxonomy of mycotoxigenic fungi. Scientific Publishers.
41) Dyląg, M., Spychała, K., Zielinski, J., Łagowski, D., & Gnat, S. (2022). Update on Stachybotrys chartarum—Black mold perceived as toxigenic and potentially pathogenic to humans. Biology, 11(3), 352.
42) Nevalainen, A., Täubel, M., & Hyvärinen, A. (2015). Indoor fungi: companions and contaminants. Indoor air, 25(2), 125-156.
43) Twarużek, M., Skrzydlewski, P., Kosicki, R., & Grajewski, J. (2021). Mycotoxins survey in feed materials and feedingstuffs in years 2015–2020. Toxicon, 202, 27-39.
44) Mezeal, I. A., Shanyoor, G. J., & Mizil, S. N. (2019). Existence of Microorganisms on Home and its Impact of Human Life. Indian Journal of Public Health, 10(8), 205.
45) Solairaj, D., Yang, Q., Legrand, N. N. G., Routledge, M. N., & Zhang, H. (2021). Molecular explication of grape berry-fungal infections and their potential application in recent postharvest infection control strategies. Trends in Food Science & Technology, 116, 903-917.
46) Conte, G., Fontanelli, M., Galli, F., Cotrozzi, L., Pagni, L., & Pellegrini, E. (2020). Mycotoxins in feed and food and the role of ozone in their detoxification and degradation: An update. Toxins, 12(8), 486.
47) Navale, V., Vamkudoth, K. R., Ajmera, S., & Dhuri, V. (2021). Aspergillus derived mycotoxins in food and the environment: Prevalence, detection, and toxicity. Toxicology Reports, 8, 1008-1030.
48) Chmielowiec-Korzeniowska, A., Tymczyna, L., Pyrz, M., Trawinska, B., Abramczyk, K., & Dobrowolska, M. (2018). Occupational exposure level of pig facility workers to chemical and biological pollutants. Annals of Agricultural and Environmental Medicine, 25(2).
49) Kidd, S., Halliday, C., & Ellis, D. (2022). Descriptions of medical fungi. CABI.
50) Gnat, S., Łagowski, D., & Nowakiewicz, A. (2020). Major challenges and perspectives in the diagnostics and treatment of dermatophyte infections. Journal of applied microbiology, 129(2), 212-232.
51) Madsen, A. M., Raulf, M., Duquenne, P., Graff, P., Cyprowski, M., Beswick, A., & Crook, B. (2021). Review of biological risks associated with the collection of municipal wastes. Science of the Total Environment, 791, 148287.

  • Share

Leave a Reply

Your email address will not be published. Required fields are marked *