1Esra Hassan Abd Ali, 2Suzan Mohammed AbdulRaheem, 3Al-zahraa J. Jassim
1Basic Science Department, Dentistry College, Mustansiriyah University, Baghdad -Iraq.
2Oral Medicine Department, College of Dentistry, Mustansiriyah University, Baghdad, Iraq.
3 Department of Basic Science, College of Dentistry ibn Sina for Medical and Pharmaceutical Sciences
ABSTRACT:
Autoantibodies, once considered mere biomarkers of autoimmune disorders, are now recognized as central players in disease pathogenesis, offering critical insights into the breakdown of immune tolerance. This review synthesizes current knowledge on the dual roles of autoantibodies—as diagnostic tools and direct mediators of tissue damage—across a spectrum of autoimmune diseases. We begin by exploring the mechanisms underlying autoantibody production, including genetic predispositions (e.g., HLA haplotypes), environmental triggers (infections, microbiome dysbiosis), and dysregulated B-cell/T-cell interactions. Pathogenic mechanisms are dissected, from complement activation and immune complex deposition to receptor blockade/activation (e.g., anti-TSH receptor in Graves’ disease) and molecular mimicry.
Highlighting disease-specific autoantibodies, we detail their clinical implications in systemic lupus erythematosus (anti-dsDNA, anti-Smith), rheumatoid arthritis (anti-CCP), and neurological disorders (anti-NMDA receptor, anti-AQP4). The review underscores the diagnostic and prognostic utility of autoantibodies, while addressing challenges such as seronegative autoimmunity and assay variability. Current therapeutic strategies, including B-cell depletion (rituximab), complement inhibition (eculizumab), and cytokine modulation, are evaluated alongside emerging approaches like antigen-specific tolerance induction and CAR-T cell therapy.
Unresolved questions—such as why some autoantibodies remain asymptomatic and their role in disease initiation—are discussed, emphasizing the need for interdisciplinary research. Advances in single-cell technologies, proteomics, and AI-driven diagnostics promise to revolutionize personalized medicine, enabling early intervention and tailored therapies. By bridging mechanistic insights with clinical applications, this review underscores the transformative potential of autoantibody research in redefining autoimmune disease management and moving toward curative strategies.
KEYWORDS :
Autoantibodies, autoimmune disorders, immune tolerance, pathogenesis, biomarkers, therapeutic strategies.
REFERENCES :
1) Pasupulla AP. CELLULAR AND MOLECULAR IMMUNOLOGY: Sonzal publishers.
2) Yu S. Exploration of sense of self and humoral immunity for artificial immune systems: Algorithms and applications: The University of Memphis; 2010.
3) Raheem SMA, Ali EHA, Jassim A-zJ, Hasan NF, Jasem AJ. The evaluation of the mechanism of interleukin-6 in immune inactivation of oral cancer. Journal of Emergency Medicine, Trauma & Acute Care. 2024;2024(6):10.
4) Santori FR. The immune system as a self-centered network of lymphocytes. Immunol Lett. 2015;166(2):109-16.
5) Kao JH, Chen DS. Global control of hepatitis B virus infection. Lancet Infect Dis. 2002;2(7):395-403.
6) Silverstein A. A History of Immunology2009.
7) Manivelavan D, C KV. Anti-cyclic citrullinated Peptide antibody: an early diagnostic and prognostic biomarker of rheumatoid arthritis. J Clin Diagn Res. 2012;6(8):1393-6.
8) Niewold TB, Harrison MJ, Paget SA. Anti-CCP antibody testing as a diagnostic and prognostic tool in rheumatoid arthritis. Qjm. 2007;100(4):193-201.
9) Zhang H, Zhao C, Wang S, Huang Y, Wang H, Zhao J, et al. Anti-dsDNA antibodies induce inflammation via endoplasmic reticulum stress in human mesangial cells. J Transl Med. 2015;13:178.
10) Fröhlich E, Wahl R. Thyroid Autoimmunity: Role of Anti-thyroid Antibodies in Thyroid and Extra-Thyroidal Diseases. Front Immunol. 2017;8:521.
11) Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, et al. Mechanisms of Autoantibody-Induced Pathology. Front Immunol. 2017;8:603.
12) Abd Ali EH, Raheem SMA. Gingival and Salivary Changes in Correlation with Multiple Sclerosis. Medico Legal Update. 2020;20(1):739-45.
13) Ghosh R, Chatterjee S, Dubey S, Pandit A, Ray BK, Benito-León J. Anti-Thyroid Peroxidase/Anti-Thyroglobulin Antibody-Related Neurologic Disorder Responsive to Steroids Presenting with Pure Acute Onset Chorea. Tremor Other Hyperkinet Mov (N Y). 2020;10:19.
14) Towns R, Pietropaolo M. GAD65 autoantibodies and its role as biomarker of Type 1 diabetes and Latent Autoimmune Diabetes in Adults (LADA). Drugs Future. 2011;36(11):847.
15) Mané-Damas M, Molenaar PC, Ulrichts P, Marcuse F, De Baets MH, Martinez-Martinez P, et al. Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmunity Reviews. 2022;21(7):103104.
16) Pisetsky DS, Lipsky PE. New insights into the role of antinuclear antibodies in systemic lupus erythematosus. Nature Reviews Rheumatology. 2020;16(10):565-79.
17) Infantino M, Nagy E, Bizzaro N, Fischer K, Bossuyt X, Damoiseaux J. Anti-dsDNA antibodies in the classification criteria of systemic lupus erythematosus. J Transl Autoimmun. 2022;5:100139.
18) Millet A, Pederzoli-Ribeil M, Guillevin L, Witko-Sarsat V, Mouthon L. Antineutrophil cytoplasmic antibody-associated vasculitides: is it time to split up the group? Ann Rheum Dis. 2013;72(8):1273-9.
19) Terao C, Yamakawa N, Yano K, Markusse IM, Ikari K, Yoshida S, et al. Rheumatoid Factor Is Associated With the Distribution of Hand Joint Destruction in Rheumatoid Arthritis. Arthritis Rheumatol. 2015;67(12):3113-23.
20) Matsushita T, Mizumaki K, Kano M, Yagi N, Tennichi M, Takeuchi A, et al. Antimelanoma differentiation-associated protein 5 antibody level is a novel tool for monitoring disease activity in rapidly progressive interstitial lung disease with dermatomyositis. Br J Dermatol. 2017;176(2):395-402.
21) Allen A, Gulhar S, Haidari R, Martinez JPP, Bekenstein J, DeLorenzo R, et al. Autoimmune glial fibrillary acidic protein astrocytopathy resulting in treatment-refractory flaccid paralysis. Multiple Sclerosis and Related Disorders. 2020;39:101924.
22) Galipeau Y, Cooper C, Langlois MA. Autoantibodies in COVID-19: implications for disease severity and clinical outcomes. Front Immunol. 2024;15:1509289.
23) Alsulami K, D’Aoust J. Not Just Myocarditis: Mixed Connective Tissue Disease (MCTD) and Overlap Myositis With Anti-Ku Positivity in a Young Male With Shortness of Breath. Cureus. 2024;16(10):e72310.
24) Alessandri C, Conti F, Conigliaro P, Mancini R, Massaro L, Valesini G. Seronegative autoimmune diseases. Ann N Y Acad Sci. 2009;1173:52-9.
25) Dema B, Charles N. Autoantibodies in SLE: Specificities, Isotypes and Receptors. Antibodies (Basel). 2016;5(1).
26) Yasmeen F, Pirzada RH, Ahmad B, Choi B, Choi S. Understanding Autoimmunity: Mechanisms, Predisposing Factors, and Cytokine Therapies. Int J Mol Sci. 2024;25(14).
27) Abdul Raheem SM, Abd Ali EH, Elian M. The Impact of Hormonal Replacement Therapy on Herpes Simplex Infection and Gingival Health in Post-Menopausal Women. Indian Journal of Public Health Research & Development. 2019;10(7).
28) Al-Shawk RS. Evaluation of some pro-inflammatory and anti-inflammatory factors in patients with acromegaly. Mustansiriya Medical Journal. 2017;16(3):71-6.
29) Janeway Jr CA, Travers P, Walport M, Shlomchik MJ. Generation of lymphocytes in bone marrow and thymus. Immunobiology: The Immune System in Health and Disease 5th edition: Garland Science; 2001.
30) Stritesky GL, Jameson SC, Hogquist KA. Selection of self-reactive T cells in the thymus. Annu Rev Immunol. 2012;30:95-114.
31) Chapter 10 – Regulation of Immune Responses in the Periphery. In: Mak TW, Saunders ME, Jett BD, editors. Primer to the Immune Response (Second Edition). Boston: Academic Cell; 2014. p. 227-46.
32) Meng X, Layhadi JA, Keane ST, Cartwright NJK, Durham SR, Shamji MH. Immunological mechanisms of tolerance: Central, peripheral and the role of T and B cells. Asia Pac Allergy. 2023;13(4):175-86.
33) Xing Y, Hogquist KA. T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol. 2012;4(6).
34) Crux NB, Elahi S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Front Immunol. 2017;8:832.
35) Bodis G, Toth V, Schwarting A. Role of Human Leukocyte Antigens (HLA) in Autoimmune Diseases. Rheumatol Ther. 2018;5(1):5-20.
36) van Drongelen V, Holoshitz J. Human Leukocyte Antigen-Disease Associations in Rheumatoid Arthritis. Rheum Dis Clin North Am. 2017;43(3):363-76.
37) van der Vliet HJ, Nieuwenhuis EE. IPEX as a result of mutations in FOXP3. Clin Dev Immunol. 2007;2007:89017.
38) Cunningham MW. Rheumatic fever, autoimmunity, and molecular mimicry: the streptococcal connection. Int Rev Immunol. 2014;33(4):314-29.
39) Cunningham MW. Molecular Mimicry, Autoimmunity, and Infection: The Cross-Reactive Antigens of Group A Streptococci and their Sequelae. Microbiol Spectr. 2019;7(4).
40) Mahdi Kamel W, Hadi Hameed B, Abdul Hassan Ali DM. The association of serum cancer antigen 125 and c-reactive protein level with the severity of preeclampsia. Kerbala Journal of Medicine. 2012;5(11):1322-7.
41) Stolt P, Yahya A, Bengtsson C, Källberg H, Rönnelid J, Lundberg I, et al. Silica exposure among male current smokers is associated with a high risk of developing ACPA-positive rheumatoid arthritis. Ann Rheum Dis. 2010;69(6):1072-6.
42) Bynoe MS, Grimaldi CM, Diamond B. Estrogen up-regulates Bcl-2 and blocks tolerance induction of naive B cells. Proc Natl Acad Sci U S A. 2000;97(6):2703-8.
43) Groom J, Kalled SL, Cutler AH, Olson C, Woodcock SA, Schneider P, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome. J Clin Invest. 2002;109(1):59-68.
44) Zhang X, Ing S, Fraser A, Chen M, Khan O, Zakem J, et al. Follicular helper T cells: new insights into mechanisms of autoimmune diseases. Ochsner J. 2013;13(1):131-9.
45) Humby F, Bombardieri M, Manzo A, Kelly S, Blades MC, Kirkham B, et al. Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med. 2009;6(1):e1.
46) Routsias JG, Tzioufas AG. B-cell epitopes of the intracellular autoantigens Ro/SSA and La/SSB: tools to study the regulation of the autoimmune response. J Autoimmun. 2010;35(3):256-64.
47) Becart S, Whittington KB, Prislovsky A, Rao NL, Rosloniec EF. The role of posttranslational modifications in generating neo-epitopes that bind to rheumatoid arthritis-associated HLA-DR alleles and promote autoimmune T cell responses. PLoS One. 2021;16(1):e0245541.
48) Fehringer M, Vogl T. Molecular mimicry in the pathogenesis of autoimmune rheumatic diseases. J Transl Autoimmun. 2025;10:100269.
49) Di Vincenzo F, Del Gaudio A, Petito V, Lopetuso LR, Scaldaferri F. Gut microbiota, intestinal permeability, and systemic inflammation: a narrative review. Intern Emerg Med. 2024;19(2):275-93.
50) Cheng H, Guan X, Chen D, Ma W. The Th17/Treg Cell Balance: A Gut Microbiota-Modulated Story. Microorganisms. 2019;7(12).
51) Santana-Sánchez P, Vaquero-García R, Legorreta-Haquet MV, Chávez-Sánchez L, Chávez-Rueda AK. Hormones and B-cell development in health and autoimmunity. Front Immunol. 2024;15:1385501.
52) Kanda N, Tsuchida T, Tamaki K. Estrogen enhancement of anti-double-stranded DNA antibody and immunoglobulin G production in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Arthritis Rheum. 1999;42(2):328-37.
53) Ahmed AA. The significance of serum hepcidin on iron status in overweight and obese patients with iron-deficiency anemia. Iraqi Journal of Hematology. 2020;9(1):30-3.
54) Pisetsky DS. Pathogenesis of autoimmune disease. Nature Reviews Nephrology. 2023;19(8):509-24.
55) Rowley MJ, Whittingham SF. The Role of Pathogenic Autoantibodies in Autoimmunity. Antibodies. 2015;4(4):314-53.
56) Suurmond J, Diamond B. Autoantibodies in systemic autoimmune diseases: specificity and pathogenicity. J Clin Invest. 2015;125(6):2194-202.
57) Deane KD, Norris JM, Holers VM. Preclinical rheumatoid arthritis: identification, evaluation, and future directions for investigation. Rheum Dis Clin North Am. 2010;36(2):213-41.
58) Irure-Ventura J, López-Hoyos M. Disease criteria of systemic lupus erythematosus (SLE); the potential role of non-criteria autoantibodies. J Transl Autoimmun. 2022;5:100143.
59) Narayanan K, Marwaha V, Shanmuganandan K, Shankar S. Correlation between Systemic Lupus Erythematosus Disease Activity Index, C3, C4 and Anti-dsDNA Antibodies. Med J Armed Forces India. 2010;66(2):102-7.
60) Jandali B, Salazar GA, Hudson M, Fritzler MJ, Lyons MA, Estrada YMRM, et al. The Effect of Anti-Scl-70 Antibody Determination Method on Its Predictive Significance for Interstitial Lung Disease Progression in Systemic Sclerosis. ACR Open Rheumatol. 2022;4(4):345-51.
61) Beck LH, Jr., Fervenza FC, Beck DM, Bonegio RG, Malik FA, Erickson SB, et al. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J Am Soc Nephrol. 2011;22(8):1543-50.
62) Talib EQ, Taha GI. Involvement of interlukin-17A (IL-17A) gene polymorphism and interlukin-23 (IL-23) level in the development of peri-implantitis. BDJ Open. 2024 Feb 28;10(1):12. doi: 10.1038/s41405-024-00193-9. PMID: 38413570; PMCID: PMC10899656.