Bacterial Resistance to Antibiotics: A Review Article 

  • Home
  • Bacterial Resistance to Antibiotics: A Review Article 

Bacterial Resistance to Antibiotics: A Review Article 

1Sarah Kassab Shandaway Al-Zamali, 2Shahad Saad Mohammed, 3Salena Abdul Abbas Naser, 4Ali A. Al-fahham
1College of Nursing, Department of Medical Microbiology, Telafer University, Telafer, Iraq
2,3Technical Institute of Babylon, Al-Furat Al-Awsat Technical University (ATU), Iraq
4Faculty of Nursing, University of Kufa, Iraq


ABSTRACT:

Antibacterial resistance (ABR) is nowadays considered as a public global health problem, with expected mortality rate of 106 yearly by 2050. ABR happens when pathogenic bacteria are not affected to antibacterial therapy, resulting in the spread of the pathogens inside the host. Antibacterial resistance in pathogenic bacteria is a significant concern that is correlated with high rates of deaths and illness. Bacterial resistance to many antibiotics in Gram- negative and – positive bacteria can’t be treated easily and might not be irradicated by conventional antimicrobials. Resistance acquisition to antimicrobials by bacterial pathogens is one of the most critical issues that should be well studied, especially by the increasing data that indicated a very high rates, that may reach 100% of pathogenic bacteria that resist to many antibiotics in developing countries, principally in Asia and Africa. ABR has also been found that transfer of resistance genes is the main mechanism by which acquisition of resistance to antibiotics is mediated among many species of pathogenic bacteria.

 

REFERENCES :

1) Tang, K. W. K., Millar, B. C., & Moore, J. E. (2023). Antibacterial Resistance (ABR). British journal of biomedical science, 80, 11387. https://doi.org/10.3389/bjbs.2023.11387
2) O’Neill J. (2016) Review on Antibacterial Resistance. Tackling Drug-Resistant Infections Globally. Available from: https://ABR-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf (Accessed March 21, 2023).
3) Abushaheen, M. A., Muzaheed, Fatani, A. J., Alosaimi, M., Mansy, W., George, M., Acharya, S., Rathod, S., Divakar, D. D., Jhugroo, C., Vellappally, S., Khan, A. A., Shaik, J., & Jhugroo, P. (2020). Antibacterial resistance, mechanisms and its clinical significance. Disease-a-month : DM, 66(6), 100971. https://doi.org/10.1016/j.disamonth.2020.100971
4) Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic Resistance in Bacteria-A Review. Antibiotics (Basel, Switzerland), 11(8), 1079.
https://doi.org/10.3390/antibiotics11081079
5) Giedraitienė, A., Vitkauskienė, A., Naginienė, R., & Pavilonis, A. (2011). Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas, Lithuania), 47(3), 137–146. 
6) van Hoek, A. H., Mevius, D., Guerra, B., Mullany, P., Roberts, A. P., & Aarts, H. J. (2011). Acquired antibiotic resistance genes: an overview. Frontiers in microbiology, 2, 203. https://doi.org/10.3389/fmicb.2011.00203
7) Emaneini, M., Bigverdi, R., Kalantar, D., Soroush, S., Jabalameli, F., Noorazar Khoshgnab, B., Asadollahi, P., & Taherikalani, M. (2013). Distribution of genes encoding tetracycline resistance and aminoglycoside modifying enzymes in Staphylococcus aureus strains isolated from a burn center. Annals of burns and fire disasters, 26(2), 76–80.
8) Sun, S., Selmer, M., & Andersson, D. I. (2014). Resistance to β-lactam antibiotics conferred by point mutations in penicillin-binding proteins PBP3, PBP4 and PBP6 in Salmonella enterica. PloS one, 9(5), e97202. https://doi.org/10.1371/journal.pone.0097202
9) Souza, A. I. S., Saraiva, M. M. S., Casas, M. R. T., Oliveira, G. M., Cardozo, M. V., Benevides, V. P., Barbosa, F. O., Freitas Neto, O. C., Almeida, A. M., & Berchieri, A., Junior (2020). High occurrence of β-lactamase-producing Salmonella Heidelberg from poultry origin. PloS one, 15(3), e0230676. https://doi.org/10.1371/journal.pone.0230676
10) Leverstein-van Hall, M. A., Dierikx, C. M., Cohen Stuart, J., Voets, G. M., van den Munckhof, M. P., van Essen-Zandbergen, A., Platteel, T., Fluit, A. C., van de Sande-Bruinsma, N., Scharinga, J., Bonten, M. J., Mevius, D. J., & National ESBL surveillance group (2011). Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 17(6), 873–880. https://doi.org/10.1111/j.1469-0691.2011.03497.x
11) Drawz S. M., Bonomo R. A. (2010). Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 23, 160–201 10.1128/CMR.00037-09
12) Gebreyes, W. A., & Altier, C. (2002). Molecular characterization of multidrug-resistant Salmonella enterica subsp. enterica serovar Typhimurium isolates from swine. Journal of clinical microbiology, 40(8), 2813–2822.
https://doi.org/10.1128/JCM.40.8.2813-2822.2002
13) Poehlsgaard J., Douthwaite S. (2005). The bacterial ribosome as a target for antibiotics. Nat. Rev. Microbiol. 3, 870–881 10.1038/nrmicro1265
14) Klare I., Konstabel C., Badstübner D., Werner G., Witte W. (2003). Occurrence and spread of antibiotic resistances in Enterococcus faecium. Int. J. Food Microbiol. 88, 269–290 10.1016/S0168-1605(03)00190-.

  • Share

Leave a Reply

Your email address will not be published. Required fields are marked *