1 Rasha A.H. Alathary, 2Rusul A. Abass, 3Seenaa Taqi Mansour Al muhtaser, 4 Ali A. Al-fahham
1Department of Pathological Analysis, College of Science, Al-Qadisiyah University, Iraq
2Department of Biochemistry, College of Medicine, University of Diyala, 32001, Ba’aqubah, Diyala, Iraq
3Faculty of Pharmacy, University of Kufa, Iraq
4Corresponding Author, Faculty of Nursing, University of Kufa, Iraq
ABSTRACT:
Interleukin-4 (IL-4) is one of the most important immunomodulatory cytokines. Although it is thought of purely as acting on the differentiation of T helper cells, IL-4 can polarize macrophages. That is why knowledge of the biochemical pathways and molecular mechanisms of IL-4 action is needed. Various biological activities have been ascribed to IL-4, including immune responses, inflammation, and tissue homeostasis. This wide range of activities is likely to be based on defined pathophysiological features in diseases within the nervous system and allergic disorders. Hence, this review attempts to compile the most recent findings regarding the pathophysiological functions of IL-4, focusing primarily on its contribution to neuroinflammation, macrophage polarization, and allergic responses. In conclusion, IL-4 is a multifaceted cytokine that plays crucial roles in immune responses, influencing macrophage polarization, tissue repair, and inflammation across various biological systems. Continued research into its biochemical pathways and interactions with other cytokines will be essential for harnessing its therapeutic potential in treating inflammatory and autoimmune diseases. The pathophysiology of IL-4 is multifaceted, influencing both immune responses and neural health. Its roles in microglial polarization, neuroinflammation, and allergic diseases highlight its significance as a therapeutic target. Despite the progress made in understanding IL-4’s functions, further research is necessary to unravel its complex signaling mechanisms and to explore its potential in clinical applications across various pathological conditions.
KEYWORDS :
Biochemistry, Pathophysiology, Clinical Importance, IL-4.
.
REFERENCES :
1) Armstrong, A.., & Read, C. (2020). Pathophysiology, Clinical Presentation, and Treatment of Psoriasis: A Review.. JAMA , 323 19 , 1945-1960 . http://doi.org/10.1001/jama.2020.4006
2) Baruch, K.., Ron-Harel, N.., Gal, Hilah., Deczkowska, A.., Shifrut, Eric., Ndifon, W.., Mirlas-Neisberg, Nataly., Cardon, M.., Vaknin, I.., Cahalon, L.., Berkutzki, T.., Mattson, M.., Gomez-Pinilla, F.., Friedman, N.., & Schwartz, M.. (2013). CNS-specific immunity at the choroid plexus shifts toward destructive Th2 inflammation in brain aging. Proceedings of the National Academy of Sciences , 110 , 2264 – 2269 .
http://doi.org/10.1073/pnas.1211270110
3) Bendinelli, P.., Matteucci, E.., Dogliotti, G.., Corsi, M.., Banfi, G.., Maroni, P.., & Desiderio, M.. (2010). Molecular basis of anti‐inflammatory action of platelet‐rich plasma on human chondrocytes: Mechanisms of NF‐κB inhibition via HGF. Journal of Cellular Physiology , 225 . http://doi.org/10.1002/jcp.22274
4) Chen, Fei., Liu, Zhugong., Wu, Wenhui., Rozo, C.., Bowdridge, S.., Millman, Ariel C., Rooijen, N. Van., Urban, J.., Wynn, T.., & Gause, W.. (2011). An essential role for the Th2-type response in limiting tissue damage during helminth infection. Nature medicine , 18 , 260 – 266 . http://doi.org/10.1038/nm.2628
5) Crosby, L.., & Waters, C.. (2010). Epithelial repair mechanisms in the lung.. American journal of physiology. Lung cellular and molecular physiology , 298 6 , L715-31 . http://doi.org/10.1152/ajplung.00361.2009
6) Deo, S.., Mistry, Kejal J., Kakade, Amol M.., & Niphadkar, P.. (2010). Role played by Th2 type cytokines in IgE mediated allergy and asthma. Lung India : Official Organ of Indian Chest Society , 27 , 66 – 71 . http://doi.org/10.4103/0970-2113.63609
7) Frangogiannis, Nikolaos G. (2020). Cardiac fibrosis.. Cardiovascular research .
http://doi.org/10.1093/cvr/cvaa324
8) Freytes, D.., Kang, Jung-Won., Marcos-Campos, I.., & Vunjak‐Novakovic, G.. (2013). Macrophages modulate the viability and growth of human mesenchymal stem cells. Journal of Cellular Biochemistry , 114 . http://doi.org/10.1002/jcb.24357
9) Gadani, S.., Cronk, James C.., Norris, Geoffrey T., & Kipnis, J.. (2012). IL-4 in the Brain: A Cytokine To Remember. The Journal of Immunology , 189 , 4213 – 4219 . http://doi.org/10.4049/jimmunol.1202246
10) Gandhi, N.., Pirozzi, G.., & Graham, N.. (2017). Commonality of the IL-4/IL-13 pathway in atopic diseases. Expert Review of Clinical Immunology , 13 , 425 – 437 . http://doi.org/10.1080/1744666X.2017.1298443
11) Ghoreschi, K.., Jesson, M.., Li, Xiong., Lee, Jamie., Ghosh, Sarbani., Alsup, Jason W., Warner, James D., Tanaka, Masao., Steward-Tharp, Scott., Gadina, M.., Thomas, Craig J.., Minnerly, J.., Storer, C.., LaBranche, T.., Radi, Z.., Dowty, M.., Head, R.., Meyer, D.., Kishore, N.., & O’Shea, J.. (2011). Modulation of Innate and Adaptive Immune Responses by Tofacitinib (CP-690,550). The Journal of Immunology , 186 , 4234 – 4243 . http://doi.org/10.4049/jimmunol.1003668
12) Harb, Hani., & Chatila, T.. (2020). Mechanisms of Dupilumab. Clinical & Experimental Allergy , 50 , 14 – 5 . http://doi.org/10.1111/cea.13491
13) Jiang, Mei., Wang, Hairong., Jin, Mingming., Yang, Xuelian., Ji, Haifeng., Jiang, Yufeng., Zhang, Hanwen., Wu, Feifei., Wu, Guolu., Lai, Xiaoyin., Cai, Liying., Hu, Rongguo., Xu, Limin., & Li, Longxuan. (2018). Exosomes from MiR-30d-5p-ADSCs Reverse Acute Ischemic Stroke-Induced, Autophagy-Mediated Brain Injury by Promoting M2 Microglial/Macrophage Polarization. Cellular Physiology and Biochemistry , 47 , 864 – 878.
http://doi.org/10.1159/000490078
14) Junttila, I.. (2018). Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Frontiers in Immunology , 9 . http://doi.org/10.3389/fimmu.2018.00888
15) Köhler, C.., Freitas, T. H.., Stubbs, B.., Maes, M.., Solmi, M.., Veronese, N.., Andrade, N. Q. de., Morris, G.., Fernandes, Brisa., Brunoni, A.., Herrmann, N.., Raison, C.., Miller, B.., Lanctôt, K.., & Carvalho, A.. (2017). Peripheral Alterations in Cytokine and Chemokine Levels After Antidepressant Drug Treatment for Major Depressive Disorder: Systematic Review and Meta-Analysis. Molecular Neurobiology , 55 , 4195 – 4206 . http://doi.org/10.1007/s12035-017-0632-1
16) Lee, You Jeong., Holzapfel, Keli L.., Zhu, Jinfang., Jameson, S.., & Hogquist, K.. (2013). Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nature Immunology , 14 , 1146-1154 . http://doi.org/10.1038/ni.2731
17) Li, Xiaoxia., Bechara, R.., Zhao, Junjie., McGeachy, M.., & Gaffen, S.. (2019). IL-17 receptor–based signaling and implications for disease. Nature Immunology , 20 , 1594 – 1602 . http://doi.org/10.1038/s41590-019-0514-y
18) Liu, J. J.., Wei, Y.., Strawbridge, R.., Bao, Y.., Chang, Suhua., Shi, Le., Que, Jianyu., Gadad, Bharathi S.., Trivedi, M.., Kelsoe, J.., & Lu, Lin. (2019). Peripheral cytokine levels and response to antidepressant treatment in depression: a systematic review and meta-analysis. Molecular Psychiatry , 25 , 339-350 . http://doi.org/10.1038/s41380-019-0474-5
19) Martinez-Nunez, R.., Louafi, F.., & Sanchez-Elsner, T.. (2010). The Interleukin 13 (IL-13) Pathway in Human Macrophages Is Modulated by MicroRNA-155 via Direct Targeting of Interleukin 13 Receptor α1 (IL13Rα1)*. The Journal of Biological Chemistry , 286 , 1786 – 1794 . http://doi.org/10.1074/jbc.M110.169367
20) Mia, Sohel., Warnecke, Andreas., Zhang, Xingmei., Malmström, V.., & Harris, R.. (2014). An optimized Protocol for Human M2 Macrophages using M-CSF and IL-4/IL-10/TGF-β Yields a Dominant Immunosuppressive Phenotype. Scandinavian Journal of Immunology , 79 , 305 – 314 . http://doi.org/10.1111/sji.12162
21) Olin, J.., & Wechsler, M.. (2014). Asthma: pathogenesis and novel drugs for treatment. BMJ : British Medical Journal , 349 . http://doi.org/10.1136/bmj.g5517
22) Orihuela, Rubén., McPherson, C.., & Harry, G.. (2016). Microglial M1/M2 polarization and metabolic states. British Journal of Pharmacology , 173 , 649 – 665 . http://doi.org/10.1111/bph.13139
23) Pello, O.., Pizzol, M. de., Mirolo, M.., Soucek, L.., Zammataro, L.., Amabile, Angelo., Doni, A.., Nebuloni, M.., Swigart, L.., Evan, G.., Mantovani, A.., & Locati, M.. (2012). Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology.. Blood , 119 2 , 411-21 . http://doi.org/10.1182/blood-2011-02-339911
24) Sica, A.., & Mantovani, A.. (2012). Macrophage plasticity and polarization: in vivo veritas.. The Journal of clinical investigation , 122 3 , 787-95 . http://doi.org/10.1172/JCI59643
25) Wojdasiewicz, Piotr., Poniatowski, Łukasz A., & Szukiewicz, D.. (2014). The Role of Inflammatory and Anti-Inflammatory Cytokines in the Pathogenesis of Osteoarthritis. Mediators of Inflammation , 2014.
http://doi.org/10.1155/2014/561459
26) Woodcock, T.., & Morganti‐Kossmann, M.. (2013). The Role of Markers of Inflammation in Traumatic Brain Injury. Frontiers in Neurology , 4 . http://doi.org/10.3389/fneur.2013.00018
27) Yeung, Yiu To., Aziz, F.., Guerrero-Castilla, Angélica., & Arguelles, Sandro. (2018). Signaling Pathways in Inflammation and Anti-inflammatory Therapies.. Current pharmaceutical design , 24 14 , 1449-1484 .
http://doi.org/10.2174/1381612824666180327165604