Evaluation of Il-17 in Patients with Type II Diabetes Mellitus

  • Home
  • Evaluation of Il-17 in Patients with Type II Diabetes Mellitus

Evaluation of Il-17 in Patients with Type II Diabetes Mellitus

1 Entisar Manfi Ahmed, 2 Sahar Manfi Ahmed
1 Department of Microbiology, College of Medicine, University of Al Mustanseriyah, Iraq
2 Department of Dentistry, Al-Rafidain University College, Iraq



ABSTRACT:

Background: Considering the probable engagement of Interleukin-17 in the development of DM, its possible eligibility as a diagnostic marker should be evaluated.
Objectives: The aim of this study is to find out the role of IL-17 in the pathogenesis and diagnosis of diabetes mellitus.
Methods: This case-control study was carried out at Al-Husseini Teaching Hospital, Karbala, Iraq, during the period from March to September 2024. The study included 50 diagnosed DM patients and 50 healthy controls. IL-17 levels were measured by ELISA using HuamaCount (Germany) kits.
Results: Patients with DM were 48.67 ± 6.44 years old on average. The distribution of their ages was 24% from 35 to 44 years, 26% from 45 to 54 years, 18% from 55 to 64 years, and 32% from 65 to 74 years. For this male-to-female ratio, the DM group was 54:46 as compared to controls, which were 48:52. IL-17 levels were significantly higher in patients with DM (7.33 ± 1.54 pg/ml) than in the controls (5.48 ± 2.44 pg/ml) (P <0.0001). It gave an AUC of 0.63, sensitivity and specificity being 74% and 66% at a cutoff value of 6.33 pg/ml (P = 0.046), thus indicative of IL-17 as a fairly good diagnostic marker for DM.
Conclusions: Elevated IL-17 levels may be involved in the pathogenesis of DM, of potential diagnostic and predictive utility as a biomarker though its modest discriminative ability calls for more research to buttress its usefulness in clinical practice.


KEYWORDS :

IL-17, diabetes mellitus, diagnosis, sensitivity, specificity.


REFERENCES :

1) American Diabetes Association (2015). (2) Classification and diagnosis of diabetes. Diabetes care, 38 Suppl, S8–S16. https://doi.org/10.2337/dc15-S005
2) Abdel-Moneim, A.., Bakery, Heba H., & Allam, G. (2018). The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 101, 287-292. http://doi.org/10.1016/j.biopha.2018.02.103
3) Al-Fahham Ali, A., Jaffar, A. M., Shubar, S. N. A., & Hadi, H. S. (2024). Structure and physiological significance of IL-17: A review article. International Journal of Health & Medical Research, 3(09), 666–669. doi: 10.58806/ijhmr. 2024.v3i09n03.
4) Arif, S.., Moore, F.., Marks, K.., Bouckenooghe, T.., Dayan, C.., Planas, R.., Vives-Pi, M.., Powrie, J.., Tree, T.., Marchetti, P.., Huang, G.., Gurzov, E. N.., Pujol-Borrell, R.., Eizirik, D.., & Peakman, M. (2011). Peripheral and Islet Interleukin-17 Pathway Activation Characterizes Human Autoimmune Diabetes and Promotes Cytokine-Mediated β-Cell Death. Diabetes, 60, 2112 – 2119. http://doi.org/10.2337/db10-1643
5) Basevi, V. (2011). Diagnosis and Classification of Diabetes Mellitus. Diabetes Care, 34, S62 – S69.
http://doi.org/10.2337/dc11-S062
6) Berbudi, Afiat., Rahmadika, N.., Tjahjadi, Adi Imam., & Ruslami, R. (2020). Type 2 Diabetes and its Impact on the Immune System. Current Diabetes Reviews, 16, 442 – 449. http://doi.org/10.2174/1573399815666191024085838
7) Brophy, S.., Davies, H.., Mannan, Sopna., Brunt, H.., & Williams, Rhys. (2011). Interventions for latent autoimmune diabetes (LADA) in adults. The Cochrane database of systematic reviews, 9, CD006165.
http://doi.org/10.1002/14651858.CD006165.pub3
8) Bruce, D.., Yu, Sanhong., Ooi, Jot Hui., & Cantorna, M. (2011). Converging pathways lead to overproduction of IL-17 in the absence of vitamin D signaling. International immunology, 23 8, 519-28. http://doi.org/10.1093/intimm/dxr045
9) Chait, A.., & Hartigh, Laura J. den. (2020). Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 7.
http://doi.org/10.3389/fcvm.2020.00022
10) Dalmas, E.., Venteclef, N.., Caer, Charles., Poitou, C.., Cremer, I.., Aron‐Wisnewsky, J.., Lacroix-Desmazes, S.., Bayry, J.., Kaveri, S.., Clément, K.., André, S.., & Guerre-Millo, M. (2014). T Cell–Derived IL-22 Amplifies IL-1β–Driven Inflammation in Human Adipose Tissue: Relevance to Obesity and Type 2 Diabetes. Diabetes, 63, 1966 – 1977. http://doi.org/10.2337/db13-1511
11) Daniele, Giuseppe., Mendoza, R. G.., Mendoza, R. G.., Winnier, Deidre A.., Fiorentino, T. V.., Zuo, Pengou., Cornell, J.., Andreozzi, F.., Jenkinson, C.., Cersosimo, E.., Federici, M.., Tripathy, D.., & Folli, F. (2014). The inflammatory status score including IL-6, TNF-α, osteopontin, fractalkine, MCP-1 and adiponectin underlies whole-body insulin resistance and hyperglycemia in type 2 diabetes mellitus. Acta Diabetologica , 51 , 123-131 . http://doi.org/10.1007/s00592-013-0543-1
12) Eyerich, K.., Dimartino, V.., & Cavani, A. (2017). IL‐17 and IL‐22 in immunity: Driving protection and pathology. European Journal of Immunology, 47 . http://doi.org/10.1002/eji.201646723
13) Harley, I. T.., Stankiewicz, T.., Giles, Daniel A.., Softic, S.., Flick, Leah M.., Cappelletti, M.., Sheridan, R.., Xanthakos, S.., Steinbrecher, K.., Sartor, R.., Kohli, Rohit., Karp, C.., & Divanovic, Senad. (2014). IL-17 Signaling Accelerates the Progression of Nonalcoholic Fatty Liver Disease in Mice. Hepatology (Baltimore, Md.), 59, 1830 – 1839. http://doi.org/10.1002/hep.26746
14) Hawkes, J.., Yan, B.., Chan, T.., & Krueger, J. (2018). Discovery of the IL-23/IL-17 Signaling Pathway and the Treatment of Psoriasis. The Journal of Immunology, 201, 1605 – 1613. http://doi.org/10.4049/jimmunol.1800013
15) Ibrahim, S.., Gadalla, Ramy., El-Ghonaimy, Eslam A.., Samir, Omnia., Mohamed, H.., Hassan, Hebatallah., Greve, B.., El-Shinawi, M.., Mohamed, M.., & Götte, M. (2017). Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways. Molecular Cancer, 16. http://doi.org/10.1186/s12943-017-0621-z
16) Jagannathan-Bogdan, Madhumita., McDonnell, M.., Shin, Hyunjin., Rehman, Qasim., Hasturk, H.., Apovian, C.., & Nikolajczyk, B. (2011). Elevated Proinflammatory Cytokine Production by a Skewed T Cell Compartment Requires Monocytes and Promotes Inflammation in Type 2 Diabetes. The Journal of Immunology, 186, 1162 – 1172. http://doi.org/10.4049/jimmunol.1002615
17) Kharroubi, A.., & Darwish, H. (2015). Diabetes mellitus: The epidemic of the century. World journal of diabetes, 6 6, 850-67. http://doi.org/10.4239/wjd.v6.i6.850
18) King, A. (2012). The use of animal models in diabetes research. British Journal of Pharmacology, 166.
http://doi.org/10.1111/j.1476-5381.2012.01911.x
19) Li, Xiaoxia., Bechara, R.., Zhao, Junjie., McGeachy, M.., & Gaffen, S. (2019). IL-17 receptor–based signaling and implications for disease. Nature Immunology, 20, 1594 – 1602. http://doi.org/10.1038/s41590-019-0514-y
20) Mandrup-Poulsen, T.., Pickersgill, Linda., & Donath, M. (2010). Blockade of interleukin 1 in type 1 diabetes mellitus. Nature Reviews Endocrinology, 6, 158-166. http://doi.org/10.1038/nrendo.2009.271
21) Matough, F. A.., Budin, S. B.., Hamid, Z.., Alwahaibi, N.., & Mohamed, J. (2012). The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos University medical journal, 12 1, 5-18.
http://doi.org/10.12816/0003082
22) Nakashima, Taiji., Jinnin, M.., Yamane, Keitaro., Honda, N.., Kajihara, I.., Makino, T.., Masuguchi, S.., Fukushima, S.., Okamoto, Yoshinobu., Hasegawa, M.., Fujimoto, M.., & Ihn, H. (2012). Impaired IL-17 Signaling Pathway Contributes to the Increased Collagen Expression in Scleroderma Fibroblasts. The Journal of Immunology, 188, 3573 – 3583. http://doi.org/10.4049/jimmunol.1100591
23) Neuhofer, A.., Zeyda, M.., Mascher, D.., Itariu, B.., Murano, I.., Leitner, L.., Hochbrugger, E.., Fraisl, P.., Cinti, S.., Serhan, C.., & Stulnig, T. (2013). Impaired Local Production of Proresolving Lipid Mediators in Obesity and 17-HDHA as a Potential Treatment for Obesity-Associated Inflammation. Diabetes, 62, 1945 – 1956. http://doi.org/10.2337/db12-0828
24) Pettersson, U.., Waldén, Tomas B.., Carlsson, P.., Jansson, L.., & Phillipson, M. (2012). Female Mice are Protected against High-Fat Diet Induced Metabolic Syndrome and Increase the Regulatory T Cell Population in Adipose Tissue. PLoS ONE, 7. http://doi.org/10.1371/journal.pone.0046057
25) Prietl, B.., Treiber, Gerlies., Pieber, T.., & Amrein, K. (2013). Vitamin D and Immune Function. Nutrients, 5, 2502 – 2521. http://doi.org/10.3390/nu5072502
26) Puchulu, F. (2018). Definition, Diagnosis and Classification of Diabetes Mellitus., 7-18. http://doi.org/10.1007/978-3-319-72475-1_2
27) Tilg, H.., Moschen, A.., & Roden, M. (2017). NAFLD and diabetes mellitus. Nature Reviews Gastroenterology &Hepatology, 14, 32-42. http://doi.org/10.1038/nrgastro.2016.147
28) Tuttle, K.., Bakris, G.., Bilous, R.., Chiang, Jane L.., Boer, I. D. de., Goldstein-Fuchs, J.., Hirsch, I.., Kalantar-Zadeh, K.., Narva, A.., Navaneethan, S.., Neumiller, Joshua J.., Patel, U.., Ratner, R.., Whaley-Connell, A.., & Molitch, M. (2014). Diabetic Kidney Disease: A Report from an ADA Consensus Conference. Diabetes Care, 37, 2864 – 2883. http://doi.org/10.2337/dc14-1296
29) Wangen, Krankenhaus. (2014). Definition, classification and diagnosis of diabetes mellitus. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology [and] German Diabetes Association, 122 7, 384-6 . http://doi.org/10.1055/s-0034-1366278
30) Wu, Hui., Wu, Michael., Chen, Yi., Allan, C.., Phillips, D.., & Hedger, M. (2012). Correlation between Blood Activin Levels and Clinical Parameters of Type 2 Diabetes. Experimental Diabetes Research, 2012.
http://doi.org/10.1155/2012/410579
31) Wu, Ling., Chen, Xing., Zhao, Junjie., Martin, B.., Zepp, J.., Ko, J.., Gu, Chunfang., Cai, Gang., Ouyang, W.., Sen, G.., Stark, G.., Su, Bing., Vines, C.., Tournier, C.., Hamilton, T.., Vidimos, A.., Gastman, B.., Liu, Caini., & Li, Xiaoxia. (2015). A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4–ERK5 axis. The Journal of Experimental Medicine, 212, 1571 – 1587. http://doi.org/10.1084/jem.20150204
32) Yeung, Yiu To., Aziz, F.., Guerrero-Castilla, Angélica., & Arguelles, Sandro. (2018). Signaling Pathways in Inflammation and Anti-inflammatory Therapies. Current pharmaceutical design, 24 14, 1449-1484.
http://doi.org/10.2174/1381612824666180327165604

  • Share

Leave a Reply

Your email address will not be published. Required fields are marked *