1Niran adnan abdul kadhum, 2Zahraa Falah Azeez, 3Enas Shehab Ahmed
1Department of Biology, Collage of Science, University of Kerbala
2College of Biotechnology, University of Al-Qadisiyah, Iraq.,
3Department of Biomedical Engineering, College of Engineering, Al-Nahrain University, Jadriya, Baghdad, Iraq
ABSTRACT:
Human Papillomavirus (HPV) is a major cause of death from cervical cancer and other anogenital cancers throughout the world. Pathogenicity of HPV is governed by intricate interplay of HPV and host cells mediated primarily by its oncoproteins E6 and E7. These oncoproteins disrupt critical pathways, including those involving tumor suppressors p53 and retinoblastoma (Rb) to induce unregulated cell proliferation and evasion of apoptosis. These mechanisms have been studied in order to develop the different diagnostic tools, such as HPV DNA testing and genotyping, and there are emerging techniques based on E6/E7 mRNA detection and high throughput sequencing. In addition, therapeutic strategies have advanced with the vaccines showing ability to prevent high risk HPV infection and ongoing research to developing targeted therapies to disrupt viral oncoprotein function. New diagnostic and therapeutic approaches to HPV research encompassing an expanding clinical landscape hold promise to reduce incidence of HPV associated malignancies and improve patient outcomes. This review summarizes the molecular pathogenesis of HPV with respect to host cells and discusses its implications for diagnostics and therapeutics, including the need for further development in this area.
REFERENCES :
1) Humans IWGotEoCRt. Human Papillomavirus (HPV) Infection. Human Papillomaviruses: International Agency for Research on Cancer; 2007.
2) Pešut E, Đukić A, Lulić L, Skelin J, Šimić I, Milutin Gašperov N, et al. Human Papillomaviruses-Associated Cancers: An Update of Current Knowledge. Viruses. 2021;13(11).
3) Yim EK, Park JS. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat. 2005;37(6):319-24.
4) Haręża DA, Wilczyński JR, Paradowska E. Human Papillomaviruses as Infectious Agents in Gynecological Cancers. Oncogenic Properties of Viral Proteins. Int J Mol Sci. 2022;23(3).
5) Williams VM, Filippova M, Soto U, Duerksen-Hughes PJ. HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. Future Virol. 2011;6(1):45-57.
6) Molina MA, Steenbergen RDM, Pumpe A, Kenyon AN, Melchers WJG. HPV integration and cervical cancer: a failed evolutionary viral trait. Trends in Molecular Medicine. 2024;30(9):890-902.
7) McBride AA, Warburton A. The role of integration in oncogenic progression of HPV-associated cancers. PLoS Pathog. 2017;13(4):e1006211.
8) Westrich JA, Warren CJ, Pyeon D. Evasion of host immune defenses by human papillomavirus. Virus Res. 2017;231:21-33.
9) Bordignon V, Di Domenico EG, Trento E, D’Agosto G, Cavallo I, Pontone M, et al. How Human Papillomavirus Replication and Immune Evasion Strategies Take Advantage of the Host DNA Damage Repair Machinery. Viruses. 2017;9(12).
10) Silva LLD, Teles AM, Santos JMO, Souza de Andrade M, Medeiros R, Faustino-Rocha AI, et al. Malignancy Associated with Low-Risk HPV6 and HPV11: A Systematic Review and Implications for Cancer Prevention. Cancers (Basel). 2023;15(16).
11) Burd EM. Human papillomavirus and cervical cancer. Clin Microbiol Rev. 2003;16(1):1-17.
12) Michaud DS, Langevin SM, Eliot M, Nelson HH, Pawlita M, McClean MD, et al. High-risk HPV types and head and neck cancer. Int J Cancer. 2014;135(7):1653-61.
13) Zheng ZM, Baker CC. Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci. 2006;11:2286-302.
14) Evande R, Rana A, Biswas-Fiss EE, Biswas SB. Protein–DNA Interactions Regulate Human Papillomavirus DNA Replication, Transcription, and Oncogenesis. International Journal of Molecular Sciences. 2023;24(10):8493.
15) Yu L, Majerciak V, Zheng Z-M. HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation. International Journal of Molecular Sciences. 2022;23(9):4943.
16) Chen Z, Schiffman M, Herrero R, DeSalle R, Anastos K, Segondy M, et al. Classification and evolution of human papillomavirus genome variants: Alpha-5 (HPV26, 51, 69, 82), Alpha-6 (HPV30, 53, 56, 66), Alpha-11 (HPV34, 73), Alpha-13 (HPV54) and Alpha-3 (HPV61). Virology. 2018;516:86-101.
17) Harari A, Chen Z, Burk RD. Human papillomavirus genomics: past, present and future. Curr Probl Dermatol. 2014;45:1-18.
18) Yeo-Teh NSL, Ito Y, Jha S. High-Risk Human Papillomaviral Oncogenes E6 and E7 Target Key Cellular Pathways to Achieve Oncogenesis. Int J Mol Sci. 2018;19(6).
19) Foster SA, Demers GW, Etscheid BG, Galloway DA. The ability of human papillomavirus E6 proteins to target p53 for degradation in vivo correlates with their ability to abrogate actinomycin D-induced growth arrest. J Virol. 1994;68(9):5698-705.
20) Capuozzo M, Santorsola M, Bocchetti M, Perri F, Cascella M, Granata V, et al. p53: From Fundamental Biology to Clinical Applications in Cancer. Biology (Basel). 2022;11(9).
21) McMurray HR, McCance DJ. Degradation of p53, not telomerase activation, by E6 is required for bypass of crisis and immortalization by human papillomavirus type 16 E6/E7. J Virol. 2004;78(11):5698-706.
22) Robinson NJ, Schiemann WP. Telomerase in Cancer: Function, Regulation, and Clinical Translation. Cancers (Basel). 2022;14(3).
23) Burassakarn A, Phusingha P, Yugawa T, Noguchi K, Ekalaksananan T, Vatanasapt P, et al. Human Papillomavirus 16 E6 Suppresses Transporter Associated with Antigen-Processing Complex in Human Tongue Keratinocyte Cells by Activating Lymphotoxin Pathway. Cancers (Basel). 2022;14(8).
24) Evans AM, Salnikov M, Tessier TM, Mymryk JS. Reduced MHC Class I and II Expression in HPV-Negative vs. HPV-Positive Cervical Cancers. Cells. 2022;11(23).
25) Helt AM, Galloway DA. Destabilization of the retinoblastoma tumor suppressor by human papillomavirus type 16 E7 is not sufficient to overcome cell cycle arrest in human keratinocytes. J Virol. 2001;75(15):6737-47.
26) Davis JN, McCabe MT, Hayward SW, Park JM, Day ML. Disruption of Rb/E2F pathway results in increased cyclooxygenase-2 expression and activity in prostate epithelial cells. Cancer Res. 2005;65(9):3633-42.
27) Engeland K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022;29(5):946-60.
28) Vats A, Trejo-Cerro O, Thomas M, Banks L. Human papillomavirus E6 and E7: What remains? Tumour Virus Res. 2021;11:200213.
29) Yuan CH, Filippova M, Duerksen-Hughes P. Modulation of apoptotic pathways by human papillomaviruses (HPV): mechanisms and implications for therapy. Viruses. 2012;4(12):3831-50.
30) Silva AJD, Moura IA, Gama M, Leal LRS, Pinho SS, Espinoza BCF, et al. Advancing Immunotherapies for HPV-Related Cancers: Exploring Novel Vaccine Strategies and the Influence of Tumor Microenvironment. Vaccines (Basel). 2023;11(8).
31) Wei Y, Zhao Z, Ma X. Description of CRISPR-Cas9 development and its prospects in human papillomavirus-driven cancer treatment. Front Immunol. 2022;13:1037124.
32) Wakabayashi R, Nakahama Y, Nguyen V, Espinoza JL. The Host-Microbe Interplay in Human Papillomavirus-Induced Carcinogenesis. Microorganisms. 2019;7(7).
33) Surviladze Z, Sterkand RT, Ozbun MA. Interaction of human papillomavirus type 16 particles with heparan sulfate and syndecan-1 molecules in the keratinocyte extracellular matrix plays an active role in infection. J Gen Virol. 2015;96(8):2232-41.
34) Horvath CA, Boulet GA, Renoux VM, Delvenne PO, Bogers JP. Mechanisms of cell entry by human papillomaviruses: an overview. Virol J. 2010;7:11.
35) Torres-Poveda K, Bahena-Román M, Madrid-González C, Burguete-García AI, Bermúdez-Morales VH, Peralta-Zaragoza O, et al. Role of IL-10 and TGF-β1 in local immunosuppression in HPV-associated cervical neoplasia. World J Clin Oncol. 2014;5(4):753-63.
36) Porter VL, Marra MA. The Drivers, Mechanisms, and Consequences of Genome Instability in HPV-Driven Cancers. Cancers (Basel). 2022;14(19).
37) Greten FR, Grivennikov SI. Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity. 2019;51(1):27-41.
38) Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Kannampuzha S, Murali R, Namachivayam A, et al. Exploring the Molecular Pathogenesis, Pathogen Association, and Therapeutic Strategies against HPV Infection. Pathogens. 2022;12(1).
39) Bosch FX, Broker TR, Forman D, Moscicki AB, Gillison ML, Doorbar J, et al. Comprehensive control of human papillomavirus infections and related diseases. Vaccine. 2013;31 Suppl 8(0 8):I1-31.
40) Williams J, Kostiuk M, Biron VL. Molecular Detection Methods in HPV-Related Cancers. Front Oncol. 2022;12:864820.
41) Bhattacharjee R, Das SS, Biswal SS, Nath A, Das D, Basu A, et al. Mechanistic role of HPV-associated early proteins in cervical cancer: Molecular pathways and targeted therapeutic strategies. Critical Reviews in Oncology/Hematology. 2022;174:103675.
42) Williamson AL. Recent Developments in Human Papillomavirus (HPV) Vaccinology. Viruses. 2023;15(7).
43) Maza M, Schocken CM, Bergman KL, Randall TC, Cremer ML. Cervical Precancer Treatment in Low- and Middle-Income Countries: A Technology Overview. J Glob Oncol. 2017;3(4):400-8.
44) Regalado Porras GO, Chávez Nogueda J, Poitevin Chacón A. Chemotherapy and molecular therapy in cervical cancer. Rep Pract Oncol Radiother. 2018;23(6):533-9.