Pathophysiology And the Biochemical and Clinical Significance of Malondialdehyde

  • Home
  • Pathophysiology And the Biochemical and Clinical Significance of Malondialdehyde

Pathophysiology And the Biochemical and Clinical Significance of Malondialdehyde

1Ali Kareem Hameed, 2Sarah Sattar jabbar, 3Mohammed Hasan Barrak, 4Ali A. Al-fahham
1Al-Furat Al-Awsat Technical University, Babylon Technical Institute, Iraq
2Collage of Nursing, Telafer University, Musol, Iraq
3Department of Basic Science, College of Dentistry, Mustansiriah University, Baghdad, Iraq
4Faculty of Nursing, University of Kufa, Iraq


ABSTRACT:

Malondialdehyde is a highly reactive three-carbon dialdehyde that is produced via lipid peroxidation. Lipid peroxidation is an oxidative degradation process of lipids that leads to the generation of reactive species of oxygen and free radicals. These highly reactive molecules can act upon DNA, proteins, and lipids, resulting in several pathological effects. Since MDA is capable of reacting with several cellular macromolecules like proteins, DNA, and phospholipids, it has been suggested as a possible causal factor in the pathogenesis of numerous human diseases. Therefore, the knowledge of formation and metabolism of malondialdehyde is essential for the comprehension of its biochemistry and clinical significance.


REFERENCES : 

1) Afzal, S., Abdul Manap, A. S., Attiq, A., Albokhadaim, I., Kandeel, M., & Alhojaily, S. M. (2023). From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Frontiers in pharmacology, 14, 1269581. 

https://doi.org/10.3389/fphar.2023.1269581
2) Ahmad, R., Tripathi, A. K., Tripathi, P., Singh, S., Singh, R., & Singh, R. K. (2008). Malondialdehyde and protein carbonyl as biomarkers for oxidative stress and disease progression in patients with chronic myeloid leukemia. In vivo (Athens, Greece), 22(4), 525–528.
3) Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity, 2014, 360438. 

https://doi.org/10.1155/2014/360438
4) Bartoli, M. L., Novelli, F., Costa, F., Malagrinò, L., Melosini, L., Bacci, E., Cianchetti, S., Dente, F. L., Di Franco, A., Vagaggini, B., & Paggiaro, P. L. (2011). Malondialdehyde in exhaled breath condensate as a marker of oxidative stress in different pulmonary diseases. Mediators of inflammation, 2011, 891752. 

https://doi.org/10.1155/2011/891752
5) Cajanding R. J. M. (2019). MDMA-Associated Liver Toxicity: Pathophysiology, Management, and Current State of Knowledge. AACN advanced critical care, 30(3), 232–248. https://doi.org/10.4037/aacnacc2019852
6) Esterbauer, H., Schaur, R. J., & Zollner, H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free radical biology & medicine, 11(1), 81–128. https://doi.org/10.1016/0891-5849(91)90192-6
7) Haro Girón, S., Monserrat Sanz, J., Ortega, M. A., Garcia-Montero, C., Fraile-Martínez, O., Gómez-Lahoz, A. M., Boaru, D. L., de Leon-Oliva, D., Guijarro, L. G., Atienza-Perez, M., Diaz, D., Lopez-Dolado, E., & Álvarez-Mon, M. (2023). Prognostic Value of Malondialdehyde (MDA) in the Temporal Progression of Chronic Spinal Cord Injury. Journal of personalized medicine, 13(4), 626. https://doi.org/10.3390/jpm13040626
8) Lankin, V. Z., Tikhaze, A. K., & Melkumyants, A. M. (2022). Malondialdehyde as an Important Key Factor of Molecular Mechanisms of Vascular Wall Damage under Heart Diseases Development. International journal of molecular sciences, 24(1), 128. https://doi.org/10.3390/ijms24010128
9) Ng, S. C. W., Furman, R., Axelsen, P. H., & Shchepinov, M. S. (2022). Free Radical Chain Reactions and Polyunsaturated Fatty Acids in Brain Lipids. ACS omega, 7(29), 25337–25345.
https://doi.org/10.1021/acsomega.2c02285
10) Onyango, A. N., & Baba, N. (2010). New hypotheses on the pathways of formation of malondialdehyde and isofurans. Free radical biology & medicine, 49(10), 1594–1600. https://doi.org/10.1016/j.freeradbiomed.2010.08.012
11) Pineda-Alemán, R., Alviz-Amador, A., Galindo-Murillo, R., Pérez-González, H., Rodríguez-Cavallo, E., & Méndez-Cuadro, D. (2023). Cysteine carbonylation with reactive carbonyl species from lipid peroxidation induce local structural changes on thioredoxin active site. Journal of molecular graphics & modelling, 124, 108533.
https://doi.org/10.1016/j.jmgm.2023.108533
12) Ray, G., & Husain, S. A. (2002). Oxidants, antioxidants and carcinogenesis. Indian journal of experimental biology, 40(11), 1213–1232.
13) Sapkota, M., Burnham, E. L., DeVasure, J. M., Sweeter, J. M., Hunter, C. D., Duryee, M. J., Klassen, L. W., Kharbanda, K. K., Sisson, J. H., Thiele, G. M., & Wyatt, T. A. (2017). Malondialdehyde-Acetaldehyde (MAA) Protein Adducts Are Found Exclusively in the Lungs of Smokers with Alcohol Use Disorders and Are Associated with Systemic Anti-MAA Antibodies. Alcoholism, clinical and experimental research, 41(12), 2093–2099.
https://doi.org/10.1111/acer.13509
14) Slimen, I. B., Najar, T., Ghram, A., Dabbebi, H., Ben Mrad, M., & Abdrabbah, M. (2014). Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group, 30(7), 513–523. https://doi.org/10.3109/02656736.2014.971446
15) Traverso, N., Menini, S., Maineri, E. P., Patriarca, S., Odetti, P., Cottalasso, D., Marinari, U. M., & Pronzato, M. A. (2004). Malondialdehyde, a lipoperoxidation-derived aldehyde, can bring about secondary oxidative damage to proteins. The journals of gerontology. Series A, Biological sciences and medical sciences, 59(9), B890–B895. https://doi.org/10.1093/gerona/59.9.b890
16) Tuma D. J. (2002). Role of malondialdehyde-acetaldehyde adducts in liver injury. Free radical biology & medicine, 32(4), 303–308. https://doi.org/10.1016/s0891-5849(01)00742-0
17) Wang, X., Lei, X. G., & Wang, J. (2014). Malondialdehyde regulates glucose-stimulated insulin secretion in murine islets via TCF7L2-dependent Wnt signaling pathway. Molecular and cellular endocrinology, 382(1), 8–16.
https://doi.org/10.1016/j.mce.2013.09.003
18) Xu, Z., & Rothstein, S. J. (2018). ROS-Induced anthocyanin production provides feedback protection by scavenging ROS and maintaining photosynthetic capacity in Arabidopsis. Plant signaling & behavior, 13(3), e1451708.
https://doi.org/10.1080/15592324.2018.1451708
19) Zhang, Y., Chen, S. Y., Hsu, T., & Santella, R. M. (2002). Immunohistochemical detection of malondialdehyde-DNA adducts in human oral mucosa cells. Carcinogenesis, 23(1), 207–211. https://doi.org/10.1093/carcin/23.1.207

  • Share

Leave a Reply

Your email address will not be published. Required fields are marked *