1lbtihaj H. Ali, 2Huda Oudah Saheb, 3Laith S. Alhiti r, 4Ali A. Al- Fahham
1Ministry of Education, General Directorate for Education in Al- Qadisiyah, Iraq
2College of Science, University of Sumer, Iraq
3Medical Physics Department, College of Applied Science – Heet, University of Anbar, Iraq,
4Faculty of Nursing, University of Kufa, Iraq
ABSTRACT:
Spectroscopic techniques can be classified based on the types of ray, reaction between the material and the energy, the form of material used and the usages for which the assay is utilized. Several types of spectroscopies have been developed, but the most frequently-used spectrometer utilized for biochemical analyses include nuclear magnetic resonance (NMR), Raman spectroscopy, infrared spectroscopy, ultraviolet and visible spectroscopy, and atomic spectroscopy. This review highlights the main types of spectroscopies and their principle of action and other technical issue. Spectroscopic chemical analysis now plays a vital role in pharmaceutical manufacturing. It is used for medication identification and quality assessment, as well as detecting metal elements and compounds present in solid or water materials — not forgetting its significant value in medical diagnostics
REFERENCES :
1) Abramczyk, H., Brozek-Pluska, B., Jarota, A., Surmacki, J., Imiela, A., & Kopec, M. (2020). A look into the use of Raman spectroscopy for brain and breast cancer diagnostics: linear and non-linear optics in cancer research as a gateway to tumor cell identity. Expert review of molecular diagnostics, 20(1), 99–115.
https://doi.org/10.1080/14737159.2020.1724092
2) Auner, G. W., Koya, S. K., Huang, C., Broadbent, B., Trexler, M., Auner, Z., Elias, A., Mehne, K. C., & Brusatori, M. A. (2018). Applications of Raman spectroscopy in cancer diagnosis. Cancer metastasis reviews, 37(4), 691–717. https://doi.org/10.1007/s10555-018-9770-9
3) Bings, N. H., Bogaerts, A., & Broekaert, J. A. (2010). Atomic spectroscopy: a review. Analytical chemistry, 82(12), 4653–4681. https://doi.org/10.1021/ac1010469
4) Chan, C. O., Jin, D. P., Dong, N. P., Chen, S. B., & Mok, D. K. (2016). Qualitative and quantitative analysis of chemical constituents of Centipeda minima by HPLC-QTOF-MS & HPLC-DAD. Journal of pharmaceutical and biomedical analysis, 125, 400–407. https://doi.org/10.1016/j.jpba.2016.04.029
5) Ember, K. J. I., Hoeve, M. A., McAughtrie, S. L., Bergholt, M. S., Dwyer, B. J., Stevens, M. M., Faulds, K., Forbes, S. J., & Campbell, C. J. (2017). Raman spectroscopy and regenerative medicine: a review. NPJ Regenerative medicine, 2, 12. https://doi.org/10.1038/s41536-017-0014-3
6) Isabella, S. S. J., Sunitha, K. A., Arjunan, S. P., & Pesala, B. (2023). A Review of Spectroscopic and Non-Spectroscopic Techniques for Diagnosing Breast Cancer. Current medical imaging, 19(6), 535–545.
https://doi.org/10.2174/1573405618666220509114727
7) Khalil, A., & Kashif, M. (2023). Nuclear Magnetic Resonance Spectroscopy for Quantitative Analysis: A Review for Its Application in the Chemical, Pharmaceutical and Medicinal Domains. Critical reviews in analytical chemistry, 53(5), 997–1011. https://doi.org/10.1080/10408347.2021.2000359
8) Kumamoto, Y., Harada, Y., Takamatsu, T., & Tanaka, H. (2018). Label-free Molecular Imaging and Analysis by Raman Spectroscopy. Acta histochemica et cytochemica, 51(3), 101–110. https://doi.org/10.1267/ahc.18019
9) Kumirska, J., Czerwicka, M., Kaczyński, Z., Bychowska, A., Brzozowski, K., Thöming, J., & Stepnowski, P. (2010). Application of spectroscopic methods for structural analysis of chitin and chitosan. Marine drugs, 8(5), 1567–1636. https://doi.org/10.3390/md8051567
10) Markley J. L. (2018). View from Nuclear Magnetic Resonance Spectroscopy. Advances in experimental medicine and biology, 1105, 19–22. https://doi.org/10.1007/978-981-13-2200-6_3
11) Mlynárik V. (2017). Introduction to nuclear magnetic resonance. Analytical biochemistry, 529, 4–9. https://doi.org/10.1016/j.ab.2016.05.006
12) Mourant, J. R., Dominguez, J., Carpenter, S., Short, K. W., Powers, T. M., Michalczyk, R., Kunapareddy, N., Guerra, A., & Freyer, J. P. (2006). Comparison of vibrational spectroscopy to biochemical and flow cytometry methods for analysis of the basic biochemical composition of mammalian cells. Journal of biomedical optics, 11(6), 064024. https://doi.org/10.1117/1.2400213
13) Oshina, I., & Spigulis, J. (2021). Beer-Lambert law for optical tissue diagnostics: current state of the art and the main limitations. Journal of biomedical optics, 26(10), 100901. https://doi.org/10.1117/1.JBO.26.10.100901
14) Ozaki Y. (2021). Infrared Spectroscopy-Mid-infrared, Near-infrared, and Far-infrared/Terahertz Spectroscopy. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry, 37(9), 1193–1212.
https://doi.org/10.2116/analsci.20R008
15) Pavia, DL. (2001) Introduction to Spectroscopy , Third Edition. Thomas Learning, Inc. Singapore,. Page 390.
16) Ríos-Reina R. and Azcarate SM. (2023) How Chemometrics Revives the UV-Vis Spectroscopy Applications as an Analytical Sensor for Spectralprint (Nontargeted) Analysis. Chemosensors.; 11(1):8. https://doi.org/10.3390/chemosensors11010008
17) Sivaji, C. Chinnasamy, S. Ramachandran, M. (2022) A Review on Spectroscopy and its Classification. Journal on Applied and Chemical Physics, 1(1): 31-37.
18) Skvaril J., Kyprianidis K.G., Dahlquist E. (2017). Applications of near infrared spectroscopy (NIRS) in biomass energy conversion processes: A review. Appl. Spectrosc. Rev.;52:675–728. doi: 10.1080/05704928.2017.1289471.
19) Zacharioudaki, D. E., Fitilis, I., & Kotti, M. (2022). Review of Fluorescence Spectroscopy in Environmental Quality Applications. Molecules (Basel, Switzerland), 27(15), 4801. https://doi.org/10.3390/molecules27154801
20) Zhang, W., Kasun, L. C., Wang, Q. J., Zheng, Y., & Lin, Z. (2022). A Review of Machine Learning for Near-Infrared Spectroscopy. Sensors (Basel, Switzerland), 22(24), 9764. https://doi.org/10.3390/s22249764.