1Hadeel S. Hadi, 2Safa Nihad Abed Shubar, 3Azhaar Mousa Jaffar, 4Ali A. Al-fahham
1College of Science, University Of Al-Qadisiyah, Al-Qadisiyah, Iraq
2,3Al-Mussaib Technical Institute, Al-Furat Al-Awsat Technical University, Mussaib 51009, Iraq
4Faculty of Nursing, University of Kufa, Iraq
ABSTRACT:
IL-17 is a pleiotropic cytokine key in lead to the proinflammatory nature within the immune system and thus it has a pronounced effect of inflammation and therefore disease pathogenesis which is particularly relevant in the case of osteoarthritis as well as other immune-mediated inflammatory diseases. While enormous strides have been made regarding its functions, additional studies are required to fill the gaps left over from previous studies and develop novel ways of treating or managing chronic inflammatory conditions on the basis of our advanced understanding of IL-17. IL-17 immune responses are still a mysterious package in acting in defense mechanisms of hosts and at the same trace back to autoimmune disease development due to its biphasic nature— this therefore justifies why an interest for exploring mechanisms by which production is achieved plus effects produced scientifically can be directed towards therapeutic opportunities yet to be fully realized. Such studies will unquestionably provide insights into immune regulation with an optimism for the development of alternative treatment strategies.
REFERENCES :
1) Biasi, S. De., Meschiari, Marianna., Gibellini, L.., Bellinazzi, Caterina., Borella, R.., Fidanza, L.., Gozzi, L.., Iannone, A.., Tartaro, D. Lo., Mattioli, M.., Paolini, Annamaria., Menozzi, M.., Milic, J.., Franceschi, G.., Fantini, R.., Tonelli, R.., Sita, M.., Sarti, M.., Trenti, T.., Brugioni, L.., Cicchetti, L.., Facchinetti, F.., Pietrangelo, A.., Clini, E.., Girardis, M.., Guaraldi, G.., Mussini, C.., & Cossarizza, A.. (2020). Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nature Communications , 11 . http://doi.org/10.1038/s41467-020-17292-4
2) Blauvelt, A.., & Chiricozzi, A.. (2018). The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis. Clinical Reviews in Allergy & Immunology , 55 , 379 – 390 . http://doi.org/10.1007/s12016-018-8702-3
3) Brembilla, N.., Senra, L.., & Boehncke, W.. (2018). The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond. Frontiers in Immunology , 9 . http://doi.org/10.3389/fimmu.2018.01682
4) Bunte, K.., & Beikler, T.. (2019). Th17 Cells and the IL-23/IL-17 Axis in the Pathogenesis of Periodontitis and Immune-Mediated Inflammatory Diseases. International Journal of Molecular Sciences , 20 . http://doi.org/10.3390/ijms20143394
5) Cho, John S.., Pietras, E.., Garcia, Nairy C., Ramos, R.., Farzam, David., Monroe, H.., Magorien, Julie E.., Blauvelt, A.., Kolls, J.., Cheung, A.., Cheng, G.., Modlin, R.., & Miller, L.. (2010). IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice.. The Journal of clinical investigation , 120 5 , 1762-73 . http://doi.org/10.1172/JCI40891
6) Conti, P.., Ronconi, G.., Caraffa, A.., Gallenga, C.., Ross, R.., Frydas, I.., & Kritas, S.. (2020). Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies.. Journal of Biological Regulators and Homeostatic Agents , 34 , 327-331 . http://doi.org/10.23812/CONTI-E
7) Cua, D.., & Tato, C.. (2010). Innate IL-17-producing cells: the sentinels of the immune system. Nature Reviews Immunology , 10 , 479-489 . http://doi.org/10.1038/nri2800
8) Dinarello, C.. (2018). Overview of the IL‐1 family in innate inflammation and acquired immunity. Immunological Reviews , 281 , 27 – 8 . http://doi.org/10.1111/imr.12621
9) Fletcher, J.., Lalor, S.., Sweeney, C.., Tubridy, N.., & Mills, K.. (2010). T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clinical & Experimental Immunology , 162 . http://doi.org/10.1111/j.1365-2249.2010.04143.x
10) Gaffen SL. (2009) Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. ;9:556–567.
11) Gaffen, S.., Jain, R.., Garg, A.., & Cua, D.. (2014). The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing. Nature Reviews Immunology , 14 , 585-600 . http://doi.org/10.1038/nri3707
12) Galdeano, C. Maldonado., Cazorla, S.., Dumit, José María Lemme., Vélez, E.., & Perdigón, G.. (2019). Beneficial Effects of Probiotic Consumption on the Immune System. Annals of Nutrition and Metabolism , 74 , 115 – 124 . http://doi.org/10.1159/000496426
13) Hawkes, J.., Yan, B.., Chan, T.., & Krueger, J.. (2018). Discovery of the IL-23/IL-17 Signaling Pathway and the Treatment of Psoriasis. The Journal of Immunology , 201 , 1605 – 1613 . http://doi.org/10.4049/jimmunol.1800013
14) Hazenberg, M.., & Spits, H.. (2014). Human innate lymphoid cells.. Blood , 124 5 , 700-9 . http://doi.org/10.1182/blood-2013-11-427781
15) Iwakura, Y., Ishigame, H., Saijo, S., & Nakae, S. (2011). Functional specialization of interleukin-17 family members. Immunity, 34(2), 149–162. https://doi.org/10.1016/j.immuni.2011.02.012
16) Jin, W.., & Dong, C.. (2013). IL-17 cytokines in immunity and inflammation. Emerging Microbes & Infections , 2 . http://doi.org/10.1038/emi.2013.58
17) Komatsu, N.., Okamoto, Kazuo., Sawa, S.., Nakashima, T.., Oh‐hora, M.., Kodama, T.., Tanaka, Sakae., Bluestone, J.., & Takayanagi, H.. (2013). Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nature Medicine , 20 , 62-68 . http://doi.org/10.1038/nm.3432
18) Lowes, M.., Suárez-Fariñas, M.., & Krueger, J.. (2014). Immunology of psoriasis.. Annual review of immunology , 32 , 227-55 . http://doi.org/10.1146/annurev-immunol-032713-120225
19) Lubberts, E.. (2015). The IL-23–IL-17 axis in inflammatory arthritis. Nature Reviews Rheumatology , 11 , 415-429 . http://doi.org/10.1038/nrrheum.2015.53
20) Meng, Fanli., Wang, Kai., Aoyama, Tomonori., Grivennikov, S.., Paik, Y.., Scholten, D.., Cong, M.., Iwaisako, K.., Liu, Xiao., Zhang, Mingjun., Österreicher, C.., Stickel, F.., Ley, K.., Brenner, D.., & Kisseleva, T.. (2012). Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice.. Gastroenterology , 143 3 , 765-776.e3 . http://doi.org/10.1053/j.gastro.2012.05.049
21) Ouyang, W.., Rutz, S.., Crellin, N.., Valdez, P.., & Hymowitz, S.. (2011). Regulation and functions of the IL-10 family of cytokines in inflammation and disease.. Annual review of immunology , 29 , 71-109 . http://doi.org/10.1146/annurev-immunol-031210-101312
22) Rea, I.Maeve., Gibson, David S.., Mcgilligan, V.., Mcnerlan, S.., Alexander, H. D.., & Ross, Owen A. (2018). Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines. Frontiers in Immunology , 9 . http://doi.org/10.3389/fimmu.2018.00586
23) Wojdasiewicz, Piotr., Poniatowski, Łukasz A., & Szukiewicz, D.. (2014). The Role of Inflammatory and Anti-Inflammatory Cytokines in the Pathogenesis of Osteoarthritis. Mediators of Inflammation , 2014 . http://doi.org/10.1155/2014/561459
24) Wolk, K.., Witte, Ellen., Witte, K.., Warszawska, Katarzyna., & Sabat, R.. (2010). Biology of interleukin-22. Seminars in Immunopathology , 32 , 17-31 . http://doi.org/10.1007/s00281-009-0188-x
25) Yoshimura, A.., Wakabayashi, Y.., & Mori, Tomoaki. (2010). Cellular and molecular basis for the regulation of inflammation by TGF-beta.. Journal of biochemistry , 147 6 , 781-92 . http://doi.org/10.1093/jb/mvq043
26) Zenobia, C., & Hajishengallis, G. (2015). Basic biology and role of interleukin-17 in immunity and inflammation. Periodontology 2000, 69(1), 142–159. https://doi.org/10.1111/prd.12083
27) Zhao, Huakan., Wu, Lei., Yan, Guifang., Chen, Yu., Zhou, Mingyue., Wu, Yongzhong., & Li, Yongsheng. (2021). Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduction and Targeted Therapy , 6 . http://doi.org/10.1038/s41392-021-00658-5
28) Zhu, Shu., Pan, Wen., Song, Xinyang., Liu, Yan., Shao, Xinrui., Tang, Yuanjia., Liang, Dong., He, D.., Wang, Honglin., Liu, Wenjun., Shi, Yufang., Harley, J.., Shen, N.., & Qian, Youcun. (2012). The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nature Medicine , 18 , 1077-1086 . http://doi.org/10.1038/nm.2815