Zoonotic Spillover: Global Diversity of Mammals And Distribution of Hantaviral Strains in Synathropic Animals and The Perspective for Public Health

  • Home
  • Zoonotic Spillover: Global Diversity of Mammals And Distribution of Hantaviral Strains in Synathropic Animals and The Perspective for Public Health

Zoonotic Spillover: Global Diversity of Mammals And Distribution of Hantaviral Strains in Synathropic Animals and The Perspective for Public Health

1,2*Diniz Pereira Leite Júnior, 1,2Elaine Cristina De Oliveira, 1Klaucia Rodrigues Vasconcelos, 1,3Cláudia Pedroso De Oliveira Nazário, 1,4Viviane Karolina Vivi Oliveira, 1Bianca Ayne Terrabuio, 1Andrezza Gabriela Araújo De Arruda, 5Margareth Léa Da Silva Maia, 6,7Cristiane Coimbra De Paula
1Laboratório Central de Saúde Pública do Estado de Mato Grosso – LACEN/MT. Brazil.
2Faculdade de Medicina, Universidade Federal de Mato Grosso – UFMT/MT. Brazil.
3Pronto Socorro Municipal – Prefeitura Municipal de Cuiabá, MT, Brazil.
4Instituto de Saúde Coletiva, Universidade Federal de Mato Grosso – UFMT/MT. Brazil./h6>
5Instituto de Ciências Biomédicas, Universidade de São Paulo – ICB/USP/SP. Brazil.
6Laboratório Carlos Chagas, Grupo Sabin, Cuiabá/MT, Brazil.
7Prog. Pós Graduação em Biociência Animal, Universidade de Cuiabá (UNIC), Cuiabá/MT, Brazil.


ABSTRACT: 

Introduction: Viral hemorrhagic fevers (VHF) refer to a group of diseases caused by different viral families. Rodents represent 42% of the world’s mammalian biodiversity and are reservoir hosts for a wide range of disease agents. Hantaviruses are harbored in numerous mammalian reservoirs, including rodents. To prevent and mitigate possible outbreaks of zoonotic diseases, it is necessary to know the geographic distribution, intra-specific relationships, diversity and identity of the incriminated species.
Objectives: To describe the ecology, epidemiology, epizootiology and natural history of hemorrhagic infections caused by hantavirus serotypes and their respective reservoirs.
Methodology: Bibliographical consultations and online articles were carried out in the databases relating the highlighted subjects. Results: Rodents from the subfamilies Murinae, Arvicolinae, Neotominae and Sigmodontinae are the main reservoirs of hantavirus disease. Orthohantaviruses are the most studied group, highlighting the Hantaan, Seoul, Puumala and Dobrava serotypes. Rodents of the genus Oligoryzomys, include several species and have parasite-host relationships reported for the genus Hantavirus. Other species of mammals, such as bats, squirrels and opossums, have already been described as possible reservoirs.
Conclusion: Hantavirus infections occur as a result of close interactions between humans and animals. One Health approaches highlight concerns through interdisciplinary collaboration and development of public health interventions when animals become vectors of infections, with the aim of achieving global results by recognizing the interconnection between wildlife, humans and the environment.

 

KEYWORDS:

Rodents, mammals, disease ecology, emerging infectious diseases, epidemic outbreaks.

 

REFERENCES :

1) Figueiredo LTM. Viral hemorrhagic fevers in Brazil. Rev Soc Bras Med Trop, 39(2):203-10, 2006. https://doi.org/10.1590/S0037-86822006000200014.
2) Woolhouse MEJ, Brierley L. Epidemiological characteristics of human-infective RNA viruses. Sci. Data. 2018; 5:180017. https://doi:10.1038/sdata.2018.17.
3) Holmes, E.; Drummond, A. The Evolutionary Genetics of Viral Emergence. In Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission; Childs, J.E.; Mackenzie, J.S.; Richt, J.A., Eds.; Springer-Verlag Berlin Heidelberg: New York, NY, USA, 2007; pp. 51–66.
4) Kreuder Johnson C, Hitchens PL, Smiley Evans T, Goldstein T, Thomas K, Clements A, Joly DO, Wolfe ND, Daszak P, Karesh WB; et al. Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci. Rep. 2015, 5, 14830. https://doi:10.1038/srep14830.
5) Carroll D, Daszak P, Wolfe ND, Gao GF, Morel CM, Morzaria S. et al. The Global Virome Project. Expanded viral Discovery can improve mitigation. Science 2018, 359(6378):872-74. https://doi:10.1126/science.aap7463.
6) ICTV (2023). International Committee on Taxonomy of Viruses. Disponível em https://ictv.global/taxonomy. Access em 10 Nov 2023.
7) Burgin C, Widness J, Liphardt S, Parker C, Becker M, Rochon I, Huckaby D, Zijlstra J. Mammal Diversity Database. (2024). Mammal Diversity Database [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10595931.
8) Lacher TE Jr; Mccay SD; Bianconi GV; Wolf LK; Roach NS; Percequillo AR. Conservation status of the order Rodentia of Brazil: taxonomic and biogeographical patterns. Bol Mus Paraense Emílio Goeldi. Ciências Naturais, Bélem, 2020, 15(3):535-556.
9) Abreu EF, Casali D, Costa-Araújo R, Garbino GST, Libardi GS, Loretto D, Loss AC, Marmontel M, Moras LM, Nascimento MC, Oliveira ML, Pavan SE, & Tirelli FP. (2023). Brazilian Society of Mastozoology. List of Mammals of Brazil (2023-1) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10428436.
10) Duong V, Moran S, Buchy P. Rodent-borne Diseases: One Health Perspectives. Frontiers 2023. Disponivel em: https://www.frontiersin.org/research-topics/49032/rodent-borne-diseases-one-health-perspectives. Access 10 Nov 2023.
11) Kennerley RJ, Lacher TE, Hudson, MA, Long B, McCay SD, Roach NS, Turvey ST, Youg RP. 2021. Global patterns of extinction risk and conservation needs for Rodentia and Eulipotyphla. Diversity and Distributions 27(9): 1792-1806. https://doi.org/10.1111/ ddi.13368.
12) Zinsstag J, Schelling E, Wyss K, Mahamat MB. Potential of cooperation between human and animal health to strengthen health systems. Lancet. 2005, 366:2142–5. https://doi:10.1016/S0140-6736(05)67731-8.
13) ONU (2020). Organização das Nações Unidas. United Nations Environment programme and International Livestock Research Institute. Preventin the Next Pandemic: Zoonotic diseases and how to break the chain of transmission. Nairobi, Kenya. Disponível em: https://www.unep.org/resources/report/preventing-future-zoonotic-disease-outbreaks-protecting-environment-animals-and. Access 08 Nov 2023.
14) United States Agency for International Development. USAID launches Emerging Pandemic Threats program. Washington, 2009. Disponível em: Disponível em: http://www.usaid.gov/press/releases/2009/pr091021_1.html. Access em 8 nov 2023.
15) Carneiro LA & Pettan-Brewer C. One-Health: Concept, History and Related Issues. Review and Reflection. Digital Scientific Ed. Ch.13 pp.219-240. https://doi:10.37885/210504857.
16) Lerner H, Berg C. The concept of health in One Health and some practical implications for research and education: what is One Health? Infect Ecol Epidemiol. 2015, 6;5:25300. https://doi: 10.3402/iee.v5.25300.
17) Wells K, Clark NJ. Host Specificity in Variable Environments. Trends Parasitol. 2019; 35(6):452-465. https://doi:10.1016/j.pt.2019.04.001.
18) Olival KJ, Cryan PM, Amman BR, Baric RS, Blehert DS, Brook CE, Calisher CH, Castle KT, Coleman JTH, Daszak P, Epstein JH, Field H, Frick WF, Gilbert AT, Hayman DTS, IP HS, Karesh WB, Johnson CK et al. Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: A case study of bats. PLoS Pathog. 2020 3;16(9):e1008758. https://doi:10.1371/journal.ppat.1008758.
19) Becker DJ, Albery GF, Kessler MK, Lunn TJ, Falvo CA, Czirják GA, Martin LB, Plowright RK. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J Anim Ecol 2020, 89:972-995. https://doi.org/10.1111/1365-2656.13166.
20) Hillier A, Taleb A, Chaccour E, Aenishaenslin C. Examining the concept of One Health for indigenous communities: A systematic review. One Health. 2021, 12. 100.248. https://doi.org/10.1016/j.onehlt.2021.100248.
21) Riley T, Anderson NE, Lovett R, Meredith A, Cumming B, Thandrayen J. One Health in Indigenous Communities: A Critical Review of the Evidence. Int J Environ Res Public Health. 2021, 28;18(21):11303. https://doi: 10.3390/ijerph182111303.
22) Manigold T, Vial P. Human hantavirus infections: epidemiology, clinical features, pathogenesis and immunology. Swiss Med Wkly. 2014, 20;144:w13937. https://doi:10.4414/smw.2014.13937.
23) Li CX, Shi M, tian JH, Lin XD, Kang YJ, Chen LJ, Qin XC, Xu J, Holmes EC, Zhang YZ. Unprecedented genomic diversity of RNA viruses in arthropods reveals the ancestry of negative-sense RNA viroses, 2015, eLife 4:e05378.https://doi.org/10.7554/eLife.05378.
24) Kang HJ, Gu SH, Yashina LN, Cook JÁ, Yanagihara R. Highly divergente Gentic Variants of Soricid-Borne Altai Virus (Hantaviridae) in Eurasia Suggest Ancient Host-Switching Events. Viruses 2019, 11(9):857. https://doi.org/10.3390/v11090857.
25) Bueno LM, Melo DM, Azevedo RD, Souza WM, Figueiredo LTM. Serological evidence of hantavírus infection in Neotropical Bats in a Urban Area of São Paulo State, Brazil. Tans R Soc Trop Med Hyg. 2023, 117(4):297-300. https://10.1093/trstmh/trac111.
26) Guth S, Mollentze N, Renault K, Streicker DG, Visher E, Boots M, et al. Bats host the most virulent-but not the most dangerous-zoonotic viruses. Proc Natl Acad Sci USA. 2022; 119:e2113628119. https://doi: 10.1073/pnas.2113628119.
27) Sabino-Santos Jr, G, Maia FGM, Martins RB, Gagliardi TB, Souza GM, Mulaert RL et al. Natural Infection of Neotropical bats with Hantavirus in Brazil. Sci Rep 2018, 8:9018. https://doi.org/10.1038/s41598-018-27442-w.
28) Oliveira SV, Fonseca LX, Barros e Silva RPM, Pereira VCS, Caldas EP. Análise do Perfil Epidemiológico da hantavirose no Brazil no período de 2007 a 2012. Rev Patol Trop, 2014, 43(2). https://doi.org/10.5216/rpt.v43i2.31115.
29) Mertens M, Essbauer SS, Tocou A, Schroder J, Splettstoesse WD, Kretzschamar C, Kruger DH, Groschup MH, Matz-Resing K, Ulrich RG. Non-humans Primates in outdoor Enclosures: Risk for Infection with Rodent-borne Hantaviruses. Vet Microbiol 2011, 147(3-4):420-25. https://doi.org/10.1016/j.vetmic.2020.07.018.
30) Cazarotti RLS. Eco-epidemiological study of hantaviruses in neotropical non-human primates. Master’s Degree at Ribeirão Preto College and Medicine – Virology research center. Postgraduate Program in Clinical Medicine. University of São Paulo/Ribeirão Preto. 2021.
31) Jiang W, Wang PZ, Yu HT, Zhang Y, Zhao K, Du H, Bai XF. Development of a SYBR Green I based one-step real-time PCR assay for the detection of Hantaan virus. J Virol Methods, 2014, 196: 145–151.
32) Padula, P.; Figueroa, R.; Navarrete, M.; Pizarro, E.; Cadiz, R.; Bellomo, C.; Jofre, C.; Zaror, L.; Rodriguez, E.; Murua, R. Transmission study of Andes hantavirus infection in wild sigmodontine rodents. J. Virol. 2004, 78, 11972–11979.
33) Schmaljohn C, Hjelle B. Hantaviruses: a global disease problem. Emerg Infect Dis. 1997, 3(2):95-104. https://doi:10.3201/eid0302.970202.
34) Smadel JE. Epidemic hemorrhagic fever. Am. J. Public Health Nations Health 1953, 43, 1327–1330.
35) CDC (2010). Centers for Disease Control and Prevention. Case Information: Hantavirus Pulmonary Syndrome Case Count and Descriptive Statistics. Available from: http://www.cdc.gov/ncidod/diseases/hanta/hps/ noframes/caseinfo.htm. Access on 12 Set 2023.
36) Armien AG; Armien B; Koster F; Pascale JM; Avila M; Gonzalez P; de La Cruz M; Zaldivar Y; Mendoza Y; Gracia F; Hjelle B; Lee SJ; Yates TL; Salazar-Bravo J. Hantavirus infection and habitat associations among rodent populations in agroecosystems of Panama: implications for human disease risk. Am. J. Trop. Med. Hyg. 2009, 81, 59–66.
37) CDC (2020). Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of High-Consequence Pathogens and Pathology (DHCPP). Tracking a Mystery Disease: The Detailed Story of Hantavirus Pulmonary Syndrome (HPS). Availabre from: https://www.cdc.gov/hantavirus/outbreaks/history.html. Access on 21 Nov 2023.
38) Silva MV, Vasconcelos MJ, Hidalgo NTR, Veiga APR, Canzian M, Marotto PCF, Lima VCP. Síndrome pulmonar por hantavírus: relato dos três primeiros casos em São Paulo, Brazil. Rev Inst Med Trop S Paulo. 1997; 39(4):231-4. https://doi.org/ 10.1590/S0036-46651997000400010.
39) CFSPH. The Center for Food Security & Public Health. Iowa State university. College of Veterinary Medicini. Hantavirus. 2005-2018. Availabre from: https://www.cfsph.iastate.edu/Factsheets/ pt/hantavirus-PT.pdf. Access in 14 Set 2023.
40) Brazil. Ministry of Health. Health Surveillance Secretariat. Epidemiological Surveillance Department. Manual on surveillance, prevention and control of hantaviruses/Ministry of Health, Health Surveillance Secretariat. Department of Epidemiological Surveillance. Brasília: Ministry of Health, 2013. 94 p.: ill. Available from: https://bvsms.saude.gov.br/bvs/publicacoes/manual_vigilancia_ prevencao_controle_hantaviroses.pdf. Accessed on 13 Sep 2023.
41) Priest PR, Prado A, Tambosi LR, Umetsu F, Bueno AA, pardini R, Mtzger JP. Moving to healthier landscapes: Forest restoration decreases the abundance of Hantavirus reservoir rodents in tropical forests, Science of The Total Environment, 752, 2021, https://doi.org/10.1016/j.scitotenv.2020.141967.
42) Figueiredo LTM, Souza WM, Ferrés M, Enria DA. Hantaviruses and cardiopulmonar syndrome in South America. Virus Research 2014, 187:43-54. https://doi.org;10.1016/j.viruses.2014.01.015.
43) Sabino-Santos Jr G, Ferreira FF, da Silva DJF, et al. Hantavirus antibodies among phyllostomid bats from the arc of deforestation in Southern Amazonia, Brazil. Transbound Emerg Dis. 2020; 67:1045–1051.
https://doi.org/10.1111/tbed.13442.
44) Priest PR, Uriarte M, Tambosi LR, Prado A, Pardini R, D Andrea PS, Metzger JP. Landscape, Environmental and Social Predictors of Hantavirus Risk in São Paulo, Brazil. PLoS One. 2016, 25;11(10):e0163459.
https://doi:10.1371/journal.pone.0163459.
45) Muylaert RL, Bovendorp RS, Sabino-Santos G, Jr, Prist PR, Melo GL, Priante CDF, et al. Hantavirus host assemblages and human disease in the Atlantic Forest. PLoS Negl Trop Dis 2019, 13(8): e0007655.
https://doi.org/10.1371/journal.pntd.0007655.
46) González-Ittig R.E, Salazar-Bravo J, Barquez RM. & Gardenal CN. Phylogenetic relationships among species of the genus Oligoryzomys (Rodentia, Cricetidae) from Central and South America. —Zoologica Scripta, 2010, 39, 511–526. https://doi.org/10.1111/j.1463-6409.2010.00446.x.
47) Zhang S, Wang S, Yin W, Liang M, Li J, Zhang Q, Feng Z, Li D. Epidemic characteristics of hemorrhagic fever with renal syndrome in China, 2006–2012. BMC Infect Dis, 2014, 14: 384. https://doi.org/10.1186/1471-2334-14-384.
48) Cavia R, Cueto GR, Suárez OV. Changes in rodent communities according to the landscape structure in an urban ecosystem. Landsc Urban Plan. 2009; 90(1-2):11-9. https://doi.org/10.1016/j.landurbplan.2008.10.017.
49) Childs JE; Ksiazek TG; Spiropoulou CF; Krebs JW; Morzunov S; Maupin GO; Gage KL; Rollin PE; Sarisky J; Enscore RE. Serologic and genetic identification of Peromyscus maniculatus as the primary rodent reservoir for a new hantavirus in the southwestern. United States. J. Infect. Dis. 1994, 169, 1271–1280. https://doi:10.1093/infdis/169.6.1271.
50) Schmaljohn CS; Hasty SE; Dalrymple JM; Leduc JW; Lee HW; von Bonsdorff CH; Brummer-Korvenkontio M; Vaheri A; Tsai TF; Regnery HL. Antigenic and genetic properties of viruses linked to hemorrhagic fever with renal syndrome. Science 1985, 227, 1041–1044. https:// doi:10.1126/science.2858126.
51) Arai S; Ohdachi SD; Asakawa M; Kang HJ; Mocz G; Arikawa J; Okabe N; Yanagihara R. Molecular phylogeny of a newfound hantavirus in the Japanese shrew mole (Urotrichus talpoides). Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 16296-16301.
52) Avšič-Županc T, Saksida A, Korva M. Hantavirus infections. Clin Microbiol Infect. 2019; 21S:e6-e16.
https://doi:10.1111/1469-0691.12291.
53) Vaheri A, Strandin T, Hepojoki J, Sironen T, Henttonen H, Mäkelä S, et al. Uncovering the mysteries of hantavirus infections. Nat Rev Microbiol. 2013;11(8):539–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/ 24020072.
54) Milholland MT, Castro-Arellano I, Suzán G. et al. Global Diversity and Distribution of Hantaviruses and Their Hosts. EcoHealth 15, 163–208 (2018). https://doi.org/10.1007/s10393-017-1305-2.
55) Guo WP, Lin XD, Wang W, Tian JH, Cong ML, Zhang H-L, Wang MR. et al. Phylogeny and Origins of Hantaviruses Harbored by Bats, Insectivores, and Rodents. PLoS Pathog 2013, 9(2): e1003159.
https://doi.org/10.1371/journal.ppat.1003159
56) Yanagihara R, Gu SH, Arai S, Kang HJ, Song JW. Hantaviruses: rediscovery and new beginnings. Virus Res. 2014, 17;187:6-14. http://doi:10.1016/j.viruses.2013.12.038.
57) Plyusnin A, Morzunov SP. Virus evolution and genetic diversity of hantaviruses and their rodent hosts. Curr Top Microbiol Immunol 2001, 256: 47–75.
58) Moratelli R, Calisher Ch. Bats and zoonotic viruses: can we confidently link bats with emerging deadly viruses? Mem. Inst. Oswaldo Cruz, v.110, n.1, p.1-22, 2015. https://doi:10.1590/0074- 02760150048.
59) Sousa LLF, Souza TL, tibo LHS, Moura FBP, Júnior FAZ, Oliveira-Filho EF, Ludwig-Begall LF et al. Rabies virus variants from bats closely related to variants found in marmosets (Callithrix jacchus), a neglected source of human rabies infection in Brazil. J Med Vir. 2023, 95(8). https://doi.org/10.1002/jmv.29046.
60) Sabino-Santos Jr G, Maia FGM, Vieira TM, Muylaert RDL, Lima SM, Gonçalves CB et al. Evidence of hantavirus infection among bats in Brazil. American Journal of Tropical Medicine and Hygiene, 2015. 93, 404–406.
https://doi.org/10.4269/ajtmh.15-0032.
61) Araújo J, Thomazelli LM, Henriques DA, Lautenschalager D, Ometto T, Dutra LM, Aires CC, Favorito S, Durigon EL. Detection of hantavirus in bats from remaining rain forest in São Paulo, Brazil. BMC Res Notes. 2012, 21;5:690. https://doi: 10.1186/1756-0500-5-690.
62) Bueno LM, Melo DM, Azevedo RD, Souza WM, Figueiredo LTM. Serological evidence of hantavírus infection in Neotropical Bats in a Urban Area of São Paulo State, Brazil. Tans R Soc Trop Med Hyg. 2023, 117(4):297-300. https://10.1093/trstmh/trac111.
63) Anthony SJ, Epstein JH, Murray KA, Navarrete-Macias I, Zembrana-Torrelio CM et al. A Strategy To Estimate Unknown Viral Diversity in Mammals. ASM J mBIO. 2013, 4(5):e00598-13. https://doi:https://doi.org/10.1128/mbio.00598-13.
64) Sumibcay L, Kadjo B, Gu SH, Kang HJ, Lim BK, Cook JA, Song JW, Yanagihara R. Divergent lineage of a novel hantavirus in the banana pipistrelle (Neoromicia nanus) in Côte d’Ivoire. Virol J. 2012; 9:34. https://doi:10.1186/1743-422X-9-34.
65) Chen CC, Pei KJC, Yang CM, Kuo MD, Wong ST, Kuo SC & Lin FG. A possible case of hantavirus infection in a Borneo orangutan and its conservation implication. J Med Primatol, 2010, 40(1), 2–5. https://doi:10.1111/j.1600-0684.2010.00442.x.
66) McElhinney L, Fooks AR, Featherstone C, Smith R, Morgan D. 2016. Hantavirus (Seoul virus) in pet rats: a zoonotic viral threat. Vet Rec, 178: 171–172.
67) Heuser E, Drewes S, Trimpert J, Kunec D, Mehl C, de Cock MP, de Vries A, Klier C, Oskamp M, Tenhaken P, et al. Pet Rats as the Likely Reservoir for Human Seoul Orthohantavirus Infection. Viruses. 2023; 15(2):467. https://doi.org/10.3390/ v15020467.
68) Ajayi NA, Nwigwe CG, Azuogu BN, Onyire BN, Nwonwu EU, Ogbonnaya LU, Onwe FI, Ekaete T, Günther S, Ukwaja KN. Containing a Lassa fever epidemic in a resource-limited setting: outbreak description and lessons learned from Abakaliki, Nigeria. Int. J. Infect. Dis. 2013, 1–6. https://doi.org/10.1016/j.ijid.2013.05.015.
69) Stephen C, Johnson M, Bell A. First reported cases of hantavirus pulmonary syndrome in Canada. Canada Communicable Disease Report 1994, 20:121-128.
70) Fulhorst CF, Milazzo ML, Armstrong LR, Childs JE, Rollin PE, Khabbaz R, Peters CJ, Ksiazek TG. Hantavirus and Arenavirus. Antibodies in Persons with Occupational Rodent Exposure North America. Emerg. Infect. Dis. 2007, 13: 532–538. https://doi:10.3201/eid1304.061509.
71) Li SJ, Ren HY, Hu WS, Lu L, Xu XL, Zhuang DF et al. Spatiotemporal heterogeneity analysis of hemorrhagic fever with renal syndrome in China using geographically weighted regression models. Int J Environ Res Public Health. 2014; 11: 12129-12147.
72) Fernandes J, Oliveira RC, Coelho TA, Martins RMB, Caetano KAA, Horta MAP, et al. Levantamento de vírus transmitidos por roedores em assentamentos rurais do Brazil Central. Mem Inst Oswaldo Cruz. 2019;114:e180448.
https://doi:10.1590/0074-02760180448.
73) Santos IO, Figueiredo GG, Figueiredo LT, Azevedo MR, Novo NF, Vaz CA. Inquérito sorológico de hantavírus em população rural do norte do estado de Mato Grosso, Brazil. Rev Soc Bras Med Trop. 2013;46(1):30-3.
https://doi.org/10.1590/S0037-86822012005000002.
74) Lednicky JA. Hantaviruses. a short review. Arch Pathol Lab Med. 2003, 201313];127(1):30–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/ 12521363.
75) Nichol ST. Bunyaviruses. In: Knipe DM, Howley PM, eds. Field’s Virol Vol 2, 4th ed Philadelphia, Pa Lippincott Williams Wilkins. 2001. p. 1603–33.
76) Latus J, Kitterer D, Segerer S, Artunc F, Alscher MD, Braun N. Severe thrombocytopenia in hantavirus-induced nephropathia epidemica. Infection. 2015; 43(1):83-7. https://doi:10.1007/s15010-014-0699-9.
77) Srikiatkhachorn A, Spiropoulou CF. Vascular events in viral hemorrhagic fevers: a comparative study of dengue and hantaviruses. Cell Tissue Res. 2014;355(3):621-33. https://doi:10.1007/s00441-014-1841-9.
78) Guterres A, de Oliveira RC, Fernandes J, D’Andrea PS, Bonvicino CR, Bragagnolo C, Guimaraes GD, Almada GL, Machado RR, Lavocat M, Elkhoury M da R, Schrago CG, de Lemos ER, Phylogenetic analysis of the S segmentfrom Juquitiba hantavirus: identification of two distinct lineages in Oligoryzomys nigripes. Infect., Genet. Evol. 2013, 18, 262–268, J. Mol. Epidemiol. Evol. Genet. Infect.Dis.
79) Raboni SM, Delfraro A, de Borba L, Teixeira BR, Stella V, de Araujo MR, Carstensen, S, Rubio G, Maron A, Lemos ER, D’Andrea PS, Duarte dos Santos CN. Hantavirus infection prevalence in wild rodents and human anti-hantavirus serological profiles from different geographic areas of South Brazil.Am. J. Trop. Med. Hyg. 2012, 87 (2), 371–378.
80) Terças ACP; Nascimento VF; Hattori TY; Zenazkenae LE; Atanaka M.; Lemos ERS. Pesquisa clínica em terras indígenas: a experiência com Haliti-Paresi. Rev. Enferm. UFPE 2016, 10, 680–685. https://doi:10.5205/reuol. 919980250-1-SM1006201 642.
81) Brito MG, Oliveira TM, Ferraz ML, Duarte RM, Frankó MAL, Amâncio FF, Diniz SR, Silva MX. Association between hantavirus cardiopulmonary syndrome in humans and landscape configuration in the Cerrado region of Minas Gerais, Brazil. Acta Rev Bras 2020, 14:201-08. https://dx.doi.org/10.21708/avb.2020.14.3.9411.

  • Share

Leave a Reply

Your email address will not be published. Required fields are marked *