ABSTRACT:
Nano-drugs have always been used as a new treatment for various cancers. Recently, many advances have been made in the use of nano-drugs,
which has led to the introduction of nano-drugs as an important factor in the front line. Has been treated. Also, some of the nanoparticles
studied have a dual use in the treatment and diagnosis of cancer cells, most research. Nano-drugs have been developed for breast and stomach
cancers that have gone through their clinical phases, but in other cancers, most drugs are in phases 2 and 3; Unfortunately, there is no
definitive cure for cancer, but recent advances in nanotechnology and nanomedicine, which have led to the development of new drugs, are helping
to provide a better and less complication-free treatment for cancer. In this article, we provide an overview of the use of nanodrugs, their
reported results, and their function as the mainstay of cancer treatment.
KEYWORDS:
Nanomedicine, cancer nanomedicine
REFERENCES:
1) Richardson P. What is cancer?. Practice Nursing. 1997 Nov 4;8(18):27-9.
2) Taylor M. A Simplified Biology of Cancers. Heller, T., Bailey, L. and Pattison, S. 1992.
3) Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nature
reviews cancer. 2017 Jan;17(1):20-37.
4) Roma-Rodrigues C, Pombo I, Raposo L, Pedrosa P, Fernandes AR, Baptista PV. Nanotheranostics targeting the tumor
microenvironment. Frontiers in Bioengineering and Biotechnology. 2019:197.
Application of Nanomedicine in Cancers: A Review
IJHMR, Volume 1 Issue 1 April 2022 www.ijhmr.com Page 20
5) Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug
resistance. Advanced drug delivery reviews. 2013 Nov 30;65(13-14):1866-79.
6) van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJ, Lammers T. Smart cancer nanomedicine. Nature
nanotechnology. 2019 Nov;14(11):1007-17.
7) Dogra, Prashant, et al. “Mathematical modeling in cancer nanomedicine: a review.” Biomedical Microdevices 21.2 (2019):
1-23.
8) Beltrán-Gracia, Esteban, et al. “Nanomedicine review: Clinical developments in liposomal applications.” Cancer
Nanotechnology 10.1 (2019): 1-40.
9) Mohammadzadeh, Vahideh, et al. “Applications of plant-based nanoparticles in nanomedicine: A review.” Sustainable
Chemistry and Pharmacy 25 (2022): 100606.
10) F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre and A. Jemal, CA Cancer J. Clin., 2018, 68, 394-424.
11) Kawabata A, Baoum A, Ohta N, Jacquez S, Seo GM, Berkland C, Tamura M. Intratracheal administration of a nanoparticlebased therapy with the angiotensin II type 2 receptor gene attenuates lung cancer growth. Cancer research. 2012 Apr
15;72(8):2057-67.
12) Farokhzad OC, Jon S, Khademhosseini A, Tran TN, LaVan DA, Langer R. Nanoparticle-aptamer bioconjugates: a new
approach for targeting prostate cancer cells. Cancer research. 2004 Nov 1;64(21):7668-72.
13) Kolishetti N, Dhar S, Valencia PM, Lin LQ, Karnik R, Lippard SJ, Langer R, Farokhzad OC. Engineering of self-assembled
nanoparticle platform for precisely controlled combination drug therapy. Proceedings of the National Academy of Sciences.
2010 Oct 19;107(42):17939-44.
14) Hamaguchi T, Doi T, Eguchi-Nakajima T, Kato K, Yamada Y, Shimada Y, Fuse N, Ohtsu A, Matsumoto SI, Takanashi
M, Matsumura Y. Phase I study of NK012, a novel SN-38–incorporating micellar nanoparticle, in adult patients with solid
tumors. Clinical Cancer Research. 2010 Oct 15;16(20):5058-66.
15) Hrkach J, Von Hoff D, Ali MM, Andrianova E, Auer J, Campbell T, De Witt D, Figa M, Figueiredo M, Horhota A, Low
S. Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated
pharmacological profile. Science translational medicine. 2012 Apr 4;4(128):128ra39-.
16) Zhang Z, Cheng W, Pan Y, Jia L. An anticancer agent-loaded PLGA nanomedicine with glutathione-response and targeted
delivery for the treatment of lung cancer. Journal of Materials Chemistry B. 2020;8(4):655-65.
17) Zhang LX, Sun XM, Xu ZP, Liu RT. Development of multifunctional clay-based nanomedicine for elimination of primary
invasive breast cancer and prevention of its lung metastasis and distant inoculation. ACS applied materials & interfaces.
2019 Sep 9;11(39):35566-76.
18) 18. Guthi JS, Yang SG, Huang G, Li S, Khemtong C, Kessinger CW, Peyton M, Minna JD, Brown KC, Gao J. MRI-visible
micellar nanomedicine for targeted drug delivery to lung cancer cells. Molecular pharmaceutics. 2010 Feb 1;7(1):32-40.
19) Volk, Robert J., et al. “Effect of a patient decision aid on lung cancer screening decision-making by persons who smoke: a
randomized clinical trial.” JAMA network open 3.1 (2020): e1920362-e1920362.
20) 20. Ashrafizadeh, Milad, et al. “Versatile role of curcumin and its derivatives in lung cancer therapy.” Journal of cellular
physiology 235.12 (2020): 9241-9268.
21) Li J, Zhang Z, Deng H, Zheng Z. Cinobufagin-loaded and folic acid-modified polydopamine nanomedicine combined with
photothermal therapy for the treatment of lung cancer. Frontiers in chemistry. 2021 Mar 29;9:117.
22) Lu C, Stewart DJ, Lee JJ, Ji L, Ramesh R, Jayachandran G, Nunez MI, Wistuba II, Erasmus JJ, Hicks ME, Grimm EA.
Phase I clinical trial of systemically administered TUSC2 (FUS1)-nanoparticles mediating functional gene transfer in
humans. PloS one. 2012 Apr 25;7(4):e34833.
23) Han W, Shi L, Ren L, Zhou L, Li T, Qiao Y, Wang H. A nanomedicine approach enables co-delivery of cyclosporin A and
gefitinib to potentiate the therapeutic efficacy in drug-resistant lung cancer. Signal transduction and targeted therapy. 2018
Jun 22;3(1):1-0.
24) Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N. Anisochilus carnosus leaf extract mediated
synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities. Materials Science in Semiconductor
Processing. 2015 Nov 1;39:621-8.
25) Nair, Shantikumar, et al. “Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and
osteoblast cancer cells.” Journal of Materials Science: Materials in Medicine 20.1 (2009): 235-241.
26) Rajeshkumar S, Kumar SV, Ramaiah A, Agarwal H, Lakshmi T, Roopan SM. Biosynthesis of zinc oxide nanoparticles
usingMangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells.
Enzyme and microbial technology. 2018 Oct 1;117:91-5.
27) Ramalingam V, Revathidevi S, Shanmuganayagam TS, Muthulakshmi L, Rajaram R. Gold nanoparticle induces
mitochondria-mediated apoptosis and cell cycle arrest in nonsmall cell lung cancer cells. Gold Bulletin. 2017
Jun;50(2):177-89.
Application of Nanomedicine in Cancers: A Review
IJHMR, Volume 1 Issue 1 April 2022 www.ijhmr.com Page 21
28) Han Y, Li Y, Zhang P, Sun J, Li X, Sun X, Kong F. Nanostructured lipid carriers as novel drug delivery system for lung
cancer gene therapy. Pharmaceutical development and technology. 2016 Apr 2;21(3):277-81.
29) Hu N, Yin JF, Ji Z, Hong Y, Wu P, Bian B, Song Z, Li R, Liu Q, Wu F. Strengthening gastric cancer therapy by
trastuzumab-conjugated nanoparticles with simultaneous encapsulation of anti-MiR-21 and 5-fluorouridine. Cellular
Physiology and Biochemistry. 2017;44(6):2158-73.
30) Cui FB, Liu Q, Li RT, Shen J, Wu PY, Yu LX, Hu WJ, Wu FL, Jiang CP, Yue GF, Qian XP. Enhancement of radiotherapy
efficacy by miR-200c-loaded gelatinase-stimuli PEG-Pep-PCL nanoparticles in gastric cancer cells. International journal
of nanomedicine. 2014;9:2345.
31) Xu S, Cui F, Huang D, Zhang D, Zhu A, Sun X, Cao Y, Ding S, Wang Y, Gao E, Zhang F. PD-L1 monoclonal antibodyconjugated nanoparticles enhance drug delivery level and chemotherapy efficacy in gastric cancer cells. International
journal of nanomedicine. 2019;14:17
32) Wang, Zhi, et al. “The Mechanism of Growth-inhibitory Effect of DOC-2/DAB2 in Prostate Cancer:
CHARACTERIZATION OF A NOVEL GTPase-ACTIVATING PROTEIN ASSOCIATED WITH N-TERMINAL
DOMAIN OF DOC-2/DAB2∗.” Journal of Biological Chemistry 277.15 (2002): 12622-12631.
33) Pasut, Gianfranco, Mauro Sergi, and Francesco M. Veronese. “Anti-cancer PEG-enzymes: 30 years old, but still a current
approach.” Advanced drug delivery reviews 60.1 (2008): 69-78.
34) Liu, Qin, et al. “Targeted delivery of miR-200c/DOC to inhibit cancer stem cells and cancer cells by the gelatinases-stimuli
nanoparticles.” Biomaterials 34.29 (2013): 7191-7203.
35) Liu X, Deng X, Li X, Xue D, Zhang H, Liu T, Liu Q, Mellors NJ, Li Y, Peng Y. A visualized investigation at the atomic
scale of the antitumor effect of magnetic nanomedicine on gastric cancer cells. Nanomedicine. 2014 Jul;9(9):1389-402.
36) Nasr R, Hasanzadeh H, Khaleghian A, Moshtaghian A, Emadi A, Moshfegh S. Induction of apoptosis and inhibition of
invasion in gastric cancer cells by titanium dioxide nanoparticles. Oman medical journal. 2018 Mar;33(2):111.
37) 37. Hashemi SF, Tasharrofi N, Saber MM. Green synthesis of silver nanoparticles using Teucrium polium leaf extract and
assessment of their antitumor effects against MNK45 human gastric cancer cell line. Journal of Molecular structure. 2020
May 15;1208:127889.
38) Lai CK, Lu YL, Hsieh JT, Tsai SC, Feng CL, Tsai YS, Tsai PC, Su HL, Lin YH, Lai CH. Development of chitosan/heparin
nanoparticle-encapsulated cytolethal distending toxin for gastric cancer therapy. Nanomedicine. 2014 Jun;9(6):803-17.
39) Zhang Q, Zhang H, Ning T, Liu D, Deng T, Liu R, Bai M, Zhu K, Li J, Fan Q, Ying G. Exosome-delivered c-Met siRNA
could reverse chemoresistance to cisplatin in gastric cancer. International journal of nanomedicine. 2020;15:2323.
40) Hu N, Yin JF, Ji Z, Hong Y, Wu P, Bian B, Song Z, Li R, Liu Q, Wu F. Strengthening gastric cancer therapy by
trastuzumab-conjugated nanoparticles with simultaneous encapsulation of anti-MiR-21 and 5-fluorouridine. Cellular
Physiology and Biochemistry. 2017;44(6):2158-73.
41) Ma J, Chen Y, Liang W, Li L, Du J, Pan C, Zhang C. ROS-responsive dimeric prodrug-based nanomedicine targeted
therapy for gastric cancer. Drug Delivery. 2021 Jan 1;28(1):1204-13.
42) Chen H, Lin J, Shan Y, Zhengmao L. The promotion of nanoparticle delivery to two populations of gastric cancer stem
cells by CD133 and CD44 antibodies. Biomedicine & Pharmacotherapy. 2019 Jul 1;115:108857.
43) Hafizi M, Kalanaky S, Khayamzadeh M, Noorian S, Kaveh V, Gharib B, Foudazi H, Razavi M, Jenabian A, Salimi S,
Sereshki MM. A randomized, double-blind, placebo-controlled investigation of BCc1 nanomedicine effect on survival and
quality of life in metastatic and non-metastatic gastric cancer patients. Journal of nanobiotechnology. 2019 Dec;17(1):1-9.
44) Luo L, Xu F, Peng H, Luo Y, Tian X, Battaglia G, Zhang H, Gong Q, Gu Z, Luo K. Stimuli-responsive polymeric prodrugbased nanomedicine delivering nifuroxazide and doxorubicin against primary breast cancer and pulmonary metastasis.
Journal of Controlled Release. 2020 Feb 1;318:124-35.
45) Madaan A, Singh P, Awasthi A, Verma R, Singh AT, Jaggi M, Mishra SK, Kulkarni S, Kulkarni H. Efficiency and
mechanism of intracellular paclitaxel delivery by novel nanopolymer-based tumor-targeted delivery system, NanoxelTM.
Clinical and Translational Oncology. 2013 Jan;15(1):26-32.
46) Jia Y, Wang C, Zheng J, Lin G, Ni D, Shen Z, Huang B, Li Y, Guan J, Hong W, Chen Y. Novel nanomedicine with a
chemical-exchange saturation transfer effect for breast cancer treatment in vivo. Journal of nanobiotechnology. 2019
Dec;17(1):1-4.
47) Qu D, Wang L, Liu M, Shen S, Li T, Liu Y, Huang M, Liu C, Chen Y, Mo R. Oral nanomedicine based on multicomponent
microemulsions for drug-resistant breast cancer treatment. Biomacromolecules. 2017 Apr 10;18(4):1268-80.
48) Lee S. Human serum albumin: A nanomedicine platform targeting breast cancer cells. Journal of Drug Delivery Science
and Technology. 2019 Aug 1;52:652-9..
49) Liu R, An Y, Jia W, Wang Y, Wu Y, Zhen Y, Cao J, Gao H. Macrophage-mimic shape changeable nanomedicine retained
in tumor for multimodal therapy of breast cancer. Journal of Controlled Release. 2020 May 10;321:589-601.
Application of Nanomedicine in Cancers: A Review
IJHMR, Volume 1 Issue 1 April 2022 www.ijhmr.com Page 22
50) Liu J, Ai X, Cabral H, Liu J, Huang Y, Mi P. Tumor hypoxia-activated combinatorial nanomedicine triggers systemic
antitumor immunity to effectively eradicate advanced breast cancer. Biomaterials. 2021 Jun 1;273:120847.
51) Zhou Q, Sun X, Zeng L, Liu J, Zhang Z. A randomized multicenter phase II clinical trial of mitoxantrone-loaded
nanoparticles in the treatment of 108 patients with unresected hepatocellular carcinoma. Nanomedicine: Nanotechnology,
biology and medicine. 2009 Dec 1;5(4):419-23.
52) Barraud L, Merle P, Soma E, Lefrançois L, Guerret S, Chevallier M, Dubernet C, Couvreur P, Trépo C, Vitvitski L. Increase
of doxorubicin sensitivity by doxorubicin-loading into nanoparticles for hepatocellular carcinoma cells in vitro and in vivo.
Journal of hepatology. 2005 May 1;42(5):736-43.
53) Zhang X, Li J, Yan M. Targeted hepatocellular carcinoma therapy: transferrin modified, self-assembled polymeric
nanomedicine for co-delivery of cisplatin and doxorubicin. Drug Development and Industrial Pharmacy. 2016 Oct
2;42(10):1590-9.
54) Zhu H, Zhou W, Wan Y, Ge K, Lu J, Jia C. Nanomedicine-mediated induction of immunogenic cell death and prevention
of PD-L1 overexpression for enhanced hepatocellular carcinoma therapy. Cancer Nanotechnology. 2020 Dec;11(1):1-4.
55) Huang KW, Hsu FF, Qiu JT, Chern GJ, Lee YA, Chang CC, Huang YT, Sung YC, Chiang CC, Huang RL, Lin CC. Highly
efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer. Science advances. 2020
Jan 15;6(3):eaax5032