Applications of Remote Sensing in the Study of COVID-19 Pandemic – A Review

  • Home
  • Applications of Remote Sensing in the Study of COVID-19 Pandemic – A Review

Applications of Remote Sensing in the Study of COVID-19 Pandemic – A Review

1Thi-Quynh Nguyen,2Thi-Cham Bui,3Thi-Thuy Ngo
1Faculty of Pharmacy and Nursing, East Asia University of Technology, Hanoi, Vietnam
2,3Faculty of Nursing, Phenikaa University, Hanoi, Vietnam
1ORCID: https://orcid.org/0009-0001-9868-4695


ABSTRACT:

The global outbreak of the COVID-19 pandemic has spread worldwide, affecting almost all countries and territories. Various social-economic and environmental factors influence the outbreak and spread of the epidemic. Many modern techniques have been widely employed to study the COVID-19 pandemic. This paper aims to give an overview of applications offered by remote sensing techniques to study the COVID-19 pandemic through summarising a total of 55 scientific papers. Three different issues related to the COVID-19 pandemic is presented under three sub-sections; namely (1) applications of remotely sensed images on monitoring environmental changes and (2) the analysis of social and economic impacts caused by the COVID-19 pandemic, and (3) the use of remote sensing in studies of the epidemiology of SARS-CoV-2. The findings of this study provide important insights into how to apply such an advanced techniques as remote sensing in the fight against the COVID-19 pandemic. The varied applications of remote sensing affirms the value of this advanced technique to the study of small-to-large scale disasters in general and of the COVID-19 pandemic in particular. 

 

KEYWORDS:

Applications, Remote Sensing, Landsat Images, the COVID-19 Pandemic, Review.

 

REFERENCES :

1) Ciotti M, Ciccozzi M, Terrinoni A, Jiang W-C, Wang C-B, Bernardini S. The COVID-19 pandemic. Crit Rev Clin Lab Sci. 2020;57(6):365–88.
2) Lai C-C, Liu YH, Wang C-Y, Wang Y-H, Hsueh S-C, Yen M-Y, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J Microbiol Immunol Infect. 2020;53(3):404–12.
3) Nations U. The Social Impact of COVID-19 [Internet]. 2020 [cited 2007 Mar 20]. Available from:

https://www.un.org/development/desa/dspd/2020/04/social-impact-of-covid-19/
4) WHO. WHO Coronavirus (COVID-19) Dashboard [Internet]. 2023. Available from: https://covid19.who.int/
5) Kieu Q-L, Nguyen T-T, Hoang A-H. GIS and remote sensing: a review of applications to the study of the COVID-19 pandemic. Geogr Environ Sustain. 2021;14(4).
6) Louw AS, Fu J, Raut A, Zulhilmi A, Yao S, McAlinn M, et al. The role of remote sensing during a global disaster: COVID19 pandemic as case study. Remote Sens Appl Soc Environ. 2022;27:100789.
7) Estoque RC. A review of the sustainability concept and the state of SDG monitoring using remote sensing. Remote Sens. 2020;12(11):1770.
8) Martos V, Ahmad A, Cartujo P, Ordoñez J. Ensuring agricultural sustainability through remote sensing in the era of agriculture 5.0. Appl Sci. 2021;11(13):5911.
9) Shao Z, Sumari NS, Portnov A, Ujoh F, Musakwa W, Mandela PJ. Urban sprawl and its impact on sustainable urban development: a combination of remote sensing and social media data. Geo-Spatial Inf Sci. 2021;24(2):241–55.
10) Kaku K. Satellite remote sensing for disaster management support: A holistic and staged approach based on case studies  in Sentinel Asia. Int J Disaster Risk Reduct. 2019;33:417–32.
11) Kucharczyk M, Hugenholtz CH. Remote sensing of natural hazard-related disasters with small drones: Global trends, biases, and research opportunities. Remote Sens Environ. 2021;264:112577.
12) Halder B, Bandyopadhyay J, Banik P. Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustain Cities Soc. 2021;74:103186.
13) Li J, Pei Y, Zhao S, Xiao R, Sang X, Zhang C. A review of remote sensing for environmental monitoring in China. Remote Sens. 2020;12(7):1130.
14) Shen G, Yang X, Jin Y, Xu B, Zhou Q. Remote sensing and evaluation of the wetland ecological degradation process of the Zoige Plateau Wetland in China. Ecol Indic. 2019;104:48–58.
15) Suthar MVP, Bhoite MRR, Mane MAB, Jayram MA, Mandhare P, Salvi SS. Watershed Management of Purandar Taluka by Remote Sensing and GIS: A Review. Int J Res Appl Sci Eng Technol. 2022;10(1):835–8.
16) Morales-Barquero L, Lyons MB, Phinn SR, Roelfsema CM. Trends in remote sensing accuracy assessment approaches in the context of natural resources. Remote Sens. 2019;11(19):2305.
17) Rajan Girija R, Mayappan S. Mapping of mineral resources and lithological units: A review of remote sensing techniques. Int J Image Data Fusion. 2019;10(2):79–106.
18) Tadese M, Kumar L, Koech R, Kogo BK. Mapping of land-use/land-cover changes and its dynamics in Awash River Basin using remote sensing and GIS. Remote Sens Appl Soc Environ. 2020;19:100352.
19) Hussain S, Lu L, Mubeen M, Nasim W, Karuppannan S, Fahad S, et al. Spatiotemporal variation in land use land cover in the response to local climate change using multispectral remote sensing data. Land. 2022;11(5):595.
20) Zhao J, Xie H, Ma J, Wang K. Integrated remote sensing and model approach for impact assessment of future climate change on the carbon budget of global forest ecosystems. Glob Planet Change. 2021;203:103542.
21) Avand M, Moradi H. Using machine learning models, remote sensing, and GIS to investigate the effects of changing climates and land uses on flood probability. J Hydrol. 2021;595:125663.
22) Dari J, Quintana-Seguí P, Escorihuela MJ, Stefan V, Brocca L, Morbidelli R. Detecting and mapping irrigated areas in a Mediterranean environment by using remote sensing soil moisture and a land surface model. J Hydrol. 2021;596:126129.
23) Ford TW, Quiring SM. Comparison of contemporary in situ, model, and satellite remote sensing soil moisture with a focus on drought monitoring. Water Resour Res. 2019;55(2):1565–82.
24) Li X, Chen WY, Sanesi G, Lafortezza R. Remote sensing in urban forestry: Recent applications and future directions. Remote Sens. 2019;11(10):1144.
25) Lechner AM, Foody GM, Boyd DS. Applications in remote sensing to forest ecology and management. One Earth. 2020;2(5):405–12.
26) Peyghambari S, Zhang Y. Hyperspectral remote sensing in lithological mapping, mineral exploration, and environmental geology: an updated review. J Appl Remote Sens. 2021;15(3):31501.
27) Ahmadi H, Pekkan E. Fault-based geological lineaments extraction using remote sensing and GIS—a review. Geosciences. 2021;11(5):183.
28) Sishodia RP, Ray RL, Singh SK. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020;12(19):3136.
29) Khanal S, Kc K, Fulton JP, Shearer S, Ozkan E. Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sens. 2020;12(22):3783.
30) Beck LR, Lobitz BM, Wood BL. Remote sensing and human health: new sensors and new opportunities. Emerg Infect Dis. 2000;6(3):217.
31) Viana J, Santos JV, Neiva RM, Souza J, Duarte L, Teodoro AC, et al. Remote sensing in human health: A 10-year bibliometric analysis. Remote Sens. 2017;9(12):1225.
32) Ghahremanloo M, Lops Y, Choi Y, Mousavinezhad S. Impact of the COVID-19 outbreak on air pollution levels in East Asia. Sci Total Environ. 2021;754:142226.
33) Venter ZS, Aunan K, Chowdhury S, Lelieveld J. COVID-19 lockdowns cause global air pollution declines. Proc Natl Acad Sci. 2020;117(32):18984–90.
34) Xu H, Xu G, Wen X, Hu X, Wang Y. Lockdown effects on total suspended solids concentrations in the Lower Min River (China) during COVID-19 using time-series remote sensing images. Int J Appl Earth Obs Geoinf. 2021;98:102301.
35) Cherif EK, Vodopivec M, Mejjad N, Esteves da Silva JCG, Simonovič S, Boulaassal H. COVID-19 pandemic consequences on coastal water quality using WST Sentinel-3 data: case of Tangier, Morocco. Water. 2020;12(9):2638.
36) Wagh P, Sojan JM, Babu SJ, Valsala R, Bhatia S, Srivastav R. Indicative lake water quality assessment using remote sensing images-effect of COVID-19 lockdown. Water. 2021;13(1):73.
37) Singh M, Singh BB, Singh R, Upendra B, Kaur R, Gill SS, et al. Quantifying COVID-19 enforced global changes in atmospheric pollutants using cloud computing based remote sensing. Remote Sens Appl Soc Environ. 2021;22:100489.
38) Jallu SB, Shaik RU, Srivastav R, Pignatta G. Assessing the effect of COVID-19 lockdown on surface urban heat island for different land use/cover types using remote sensing. Energy Nexus. 2022;5:100056.
39) Pei Z, Han G, Ma X, Su H, Gong W. Response of major air pollutants to COVID-19 lockdowns in China. Sci Total Environ. 2020;743:140879.
40) Aral N, Bakır H. Spatiotemporal pattern of Covid-19 outbreak in Turkey. GeoJournal. 2023;88(2):1305–16.
41) Sannino A, D’Emilio M, Castellano P, Amoruso S, Boselli A. Analysis of air quality during the COVID-19 pandemic lockdown in Naples (Italy). Aerosol Air Qual Res. 2021;21(1):200381.
42) Aman MA, Salman MS, Yunus AP. COVID-19 and its impact on environment: improved pollution levels during the lockdown period–a case from Ahmedabad, India. Remote Sens Appl Soc Environ. 2020;20:100382.
43) Maital S, Barzani E. The global economic impact of COVID-19: A summary of research. Samuel Neaman Inst Natl Policy Res. 2020;2020:1–12.
44) Minetto R, Segundo MP, Rotich G, Sarkar S. Measuring human and economic activity from satellite imagery to support city-scale decision-making during covid-19 pandemic. IEEE Trans Big Data. 2020;7(1):56–68.
45) Sobue S, Hirabayashi T, Tadono T, Murakami H, Kuze A, Ishizawa J, et al. Assessment of the Impact of Environmental and Economic Activities Related to the COVID-19 Pandemic Using Earth Observation Satellite Data. J Remote Sens Soc
Japan. 2020;40(4).
46) Chen Y, Qin R, Zhang G, Albanwan H. Spatial temporal analysis of traffic patterns during the COVID-19 epidemic by vehicle detection using planet remote-sensing satellite images. Remote Sens. 2021;13(2):208.
47) Segundo MP, Pinto A, Minetto R, da Silva Torres R, Sarkar S. Measuring economic activity from space: a case study using flying Airplanes and COVID-19. IEEE J Sel Top Appl Earth Obs Remote Sens. 2021;14:7213–24.
48) Avtar R, Singh D, Umarhadi DA, Yunus AP, Misra P, Desai PN, et al. Impact of COVID-19 lockdown on the fisheries sector: a case study from three harbors in Western India. Remote Sens. 2021;13(2):183.
49) Straka III W, Kondragunta S, Wei Z, Zhang H, Miller SD, Watts A. Examining the economic and environmental impacts of COVID-19 using earth observation data. Remote Sens. 2020;13(1):5.
50) Polgreen PM, Polgreen EL. Infectious diseases, weather, and climate. Clin Infect Dis. 2018;66(6):815–7.
51) Sajadi MM, Habibzadeh P, Vintzileos A, Shokouhi S, Miralles-Wilhelm F, Amoroso A. Temperature, humidity, and latitude analysis to predict potential spread and seasonality for COVID-19. Soc Sci Res Netw. 2020;
52) Ma Y, Pei S, Shaman J, Dubrow R, Chen K. Role of meteorological factors in the transmission of SARS-CoV-2 in the United States. Nat Commun. 2021;12(1):3602.
53) Runkle JD, Sugg MM, Leeper RD, Rao Y, Matthews JL, Rennie JJ. Short-term effects of specific humidity and temperature on COVID-19 morbidity in select US cities. Sci Total Environ. 2020;740:140093.
54) Qi H, Xiao S, Shi R, Ward MP, Chen Y, Tu W, et al. COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis. Sci Total Environ. 2020;728:138778.
55) Copat C, Cristaldi A, Fiore M, Grasso A, Zuccarello P, Santo Signorelli S, et al. The role of air pollution (PM and NO2) in COVID-19 spread and lethality: a systematic review. Environ Res. 2020;191:110129.

  • Share

Leave a Reply

Your email address will not be published. Required fields are marked *