1Yasameen Riyadh Al-Azzawi,2 Shireen S. Kamil,3Ali A. Al-fahham
1Department of Anesthesia Technologies, College of Health and Medical Technologies, University of Hilla, Babylon, Iraq
2Department of Biology, College of Science for women, University of Babylon, Iraq
3 Faculty of Nursing, University of Kufa, Iraq
ABSTRACT:
Staphylococcus aureus is amongst the leading human bacterial pathogens, causing diseases that range from small skin infections to severe systemic conditions. The high pathogenicity of S. aureus is due to its exquisite virulence armament, including adhesion proteins, toxins, and antibiotic resistance traits. The surface-associated polysaccharides of S. aureus are one critical aspect concerning virulence and biofilm development. This paper provides a synthesis of recent research concerning the virulence factors of S. aureus with the aim to focus on their pathogenic roles along with treatment implicative and existing gap.
REFERENCES :
1) Algammal, Abelazeem M., Hetta, H.., Elkelish, Amr A.., Alkhalifah, D. H.., Hozzein, W.., Batiha, G.., Nahhas, Nihal El., & Mabrok, M. (2020). Methicillin-Resistant Staphylococcus aureus (MRSA): One Health Perspective Approach to the Bacterium Epidemiology, Virulence Factors, Antibiotic-Resistance, and Zoonotic Impact. Infection and Drug Resistance, 13, 3255 – 3265. http://doi.org/10.2147/IDR.S272733
2) Argudín, M.., Mendoza, M.., & Rodicio, M. (2010). Food Poisoning and Staphylococcus aureus Enterotoxins. Toxins, 2, 1751 – 1773. http://doi.org/10.3390/toxins2071751
3) Beaudoin, T.., Yau, Y.., Stapleton, P.., Gong, Y.., Wang, Pauline W.., Guttman, D.., & Waters, V. (2017). Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance. NPJ Biofilms and Microbiomes, 3. http://doi.org/10.1038/s41522-017-0035-0
4) Bosi, Emanuele., Monk, Jonathan M.., Aziz, R.., Fondi, M.., Nizet, V.., & Palsson, B. (2016). Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proceedings of the National Academy of Sciences, 113, E3801 –
E3809. http://doi.org/10.1073/pnas.1523199113
5) Chen, Yan., Liu, Tangjuan., Wang, Ke., Hou, Changchun., Cai, Shuangqi., Huang, Ying., Du, Zhongye., Huang, Hong., Kong, J.., & Chen, Yiqiang. (2016). Baicalein Inhibits Staphylococcus Aureus Biofilm Formation and the Quorum Sensing System In Vitro. PLoS ONE, 11. http://doi.org/10.1371/journal.pone.0153468
6) Cheung, Gordon Y. C.., Bae, Justin S.., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. Virulence, 12, 547 – 569. http://doi.org/10.1080/21505594.2021.1878688
7) Craft, Kelly M.., Nguyen, Johny M.., Berg, L. J.., & Townsend, Steven D. (2019). Methicillin-resistant Staphylococcus aureus (MRSA): antibiotic-resistance and the biofilm phenotype. MedChemComm, 10 8, 1231-1241. http://doi.org/10.1039/C9MD00044E
8) Dong, Guofeng., Liu, Haiyang., Yu, Xiao., Zhang, Xiaoxiao., Lu, Hong., Zhou, Tieli., & Cao, Jianming. (2018). Antimicrobial and anti-biofilm activity of tannic acid against Staphylococcus aureus. Natural Product Research, 32, 2225 – 2228. http://doi.org/10.1080/14786419.2017.1366485
9) Hengel, I. V. van., Riool, M.., Fratila-Apachitei, L.., Witte‐Bouma, J.., Farrell, E.., Zadpoor, A. A.., Zaat, S.., & Apachitei, I. (2017). Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials, 140, 1-15. http://doi.org/10.1016/j.biomaterials.2017.02.030
10) Hochbaum, A.., Kolodkin-Gal, Ilana., Foulston, Lucy., Kolter, R.., Aizenberg, J.., & Losick, R. (2011). Inhibitory Effects of d-Amino Acids on Staphylococcus aureus Biofilm Development. Journal of Bacteriology, 193, 5616 – 5622. http://doi.org/10.1128/JB.05534-11
11) Howden, B.., Giulieri, S.., Lung, Tania Wong Fok., Baines, Sarah L.., Sharkey, Liam K. R.., Lee, Jean Y. H.., Hachani, A.., Monk, Ian R.., & Stinear, T. (2023). Staphylococcus aureus host interactions and adaptation. Nature Reviews. Microbiology, 21, 380 – 395. http://doi.org/10.1038/s41579-023-00852-y
12) Iwase, Tadayuki., Uehara, Y.., Shinji, H.., Tajima, Akiko., Seo, H.., Takada, K.., Agata, T.., & Mizunoe, Y. (2010). Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature, 465, 346-349. http://doi.org/10.1038/nature09074
13) Jenul, C.., & Horswill, A. (2019). Regulation of Staphylococcus aureus Virulence. Microbiology Spectrum, 7. http://doi.org/10.1128/microbiolspec.gpp3-0031-2018
14) Ji, Xiaolong., Cheng, Ya-Chih., Tian, Jingyuan., Zhang, Siqi., Jing, Yongshuai., & Shi, Miaomiao. (2021). Structural characterization of polysaccharide from jujube (Ziziphus jujuba Mill.) fruit. Chemical and Biological Technologies in Agriculture, 8. http://doi.org/10.1186/s40538-021-00255-2
15) Kong, Cin., Neoh, H.., & Nathan, S.. (2016). Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy. Toxins, 8. http://doi.org/10.3390/toxins8030072
16) Kvam, E.., Davis, Brian., Mondello, F.., & Garner, A. (2012). Nonthermal Atmospheric Plasma Rapidly Disinfects Multidrug-Resistant Microbes by Inducing Cell Surface Damage. Antimicrobial Agents and Chemotherapy, 56, 2028 – 2036. http://doi.org/10.1128/AAC.05642-11
17) McCarthy, Hannah., Rudkin, Justine K.., Black, Nikki S.., Gallagher, Laura A.., O’Neill, E.., & O’Gara, J. (2015). Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 5. http://doi.org/10.3389/fcimb.2015.00001
18) Meeker, D. G.., Jenkins, S.., Miller, Emily K.., Beenken, K.., Loughran, A.., Powless, Amy J.., Muldoon, Timothy J.., Galanzha, E.., Zharov, V.., Smeltzer, M.., & Chen, Jingyi. (2016). Synergistic Photothermal and Antibiotic Killing of Biofilm-Associated Staphylococcus aureus Using Targeted Antibiotic-Loaded Gold Nanoconstructs. ACS Infectious Diseases, 2, 241 – 250. http://doi.org/10.1021/acsinfecdis.5b00117
19) Miklasińska-Majdanik, Maria., Kępa, M.., Wojtyczka, R.., Idzik, D.., & Wąsik, Tomasz J. (2018). Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus Aureus Clinical Strains. International Journal of Environmental Research and Public Health, 15. http://doi.org/10.3390/ijerph15102321
20) Moormeier, Derek E.., & Bayles, K. (2017). Staphylococcus aureus biofilm: a complex developmental organism. Molecular Microbiology, 104. http://doi.org/10.1111/mmi.13634
21) Moormeier, Derek E.., Bose, Jeffrey L.., Horswill, A.., & Bayles, K. (2014). Temporal and Stochastic Control of Staphylococcus aureus Biofilm Development. mBio, 5. http://doi.org/10.1128/mBio.01341-14
22) Neopane, P.., Nepal, H.., Shrestha, R.., Uehara, O.., & Abiko, Y. (2018). In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. International Journal of General Medicine, 11, 25 – 32. http://doi.org/10.2147/IJGM.S153268
23) Otto, M. (2013). Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annual review of medicine, 64, 175-88. http://doi.org/10.1146/annurev-med-042711-140023
24) Ricciardi, B.., Muthukrishnan, G.., Masters, E.., Ninomiya, Mark J.., Lee, Charles C.., & Schwarz, E. (2018). Staphylococcus aureus Evasion of Host Immunity in the Setting of Prosthetic Joint Infection: Biofilm and Beyond. Current Reviews in Musculoskeletal Medicine, 11, 389-400. http://doi.org/10.1007/s12178-018-9501-4
25) Roy, Sashwati., Santra, S.., Das, Amitava., Dixith, Sriteja., Sinha, M.., Ghatak, Subhadip., Ghosh, Nandini., Banerjee, Pradipta., Khanna, S.., Mathew-Steiner, Shomita S., Ghatak, Piya Das., Blackstone, B.., Powell, H.., Bergdall, V.., Wozniak, D.., & Sen, C. (2019). Staphylococcus aureus Biofilm Infection Compromises Wound Healing by Causing Deficiencies in Granulation Tissue Collagen. Annals of Surgery, 271, 1174 – 1185. http://doi.org/10.1097/SLA.0000000000003053
26) Sugimoto, Shinya., Sato, F.., Miyakawa, Reina., Chiba, Akio., Onodera, S.., Hori, S.., & Mizunoe, Y. (2018). Broad impact of extracellular DNA on biofilm formation by clinically isolated Methicillin-resistant and -sensitive strains of Staphylococcus aureus. Scientific Reports, 8. http://doi.org/10.1038/s41598-018-20485-z
27) Tong, S.., Davis, Joshua S.., Eichenberger, E.., Holland, T.., & Fowler, V. (2015). Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management. Clinical Microbiology Reviews, 28, 603 – 661. http://doi.org/10.1128/CMR.00134-14
28) Watkins, Richard., David, M.., & Salata, R. (2012). Current concepts on the virulence mechanisms of meticillin-resistant Staphylococcus aureus. Journal of medical microbiology, 61 Pt 9, 1179-93. http://doi.org/10.1099/jmm.0.043513-0
29) Wu, Shijia., Duan, Nuo., Gu, Huajie., Hao, Liling., Ye, Hua., Gong, Wenhui., & Wang, Zhouping. (2016). A Review of the Methods for Detection of Staphylococcus aureus Enterotoxins. Toxins, 8. http://doi.org/10.3390/toxins8070176
30) Zecconi, A.., & Scali, F. (2013). Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunology letters, 150 1-2, 12-22. http://doi.org/10.1016/j.imlet.2013.01.004