Evaluation of Primary Stability in Mono- and Bicortical Anchored Implants. A Finite Element Analysis

  • Home
  • Evaluation of Primary Stability in Mono- and Bicortical Anchored Implants. A Finite Element Analysis

Evaluation of Primary Stability in Mono- and Bicortical Anchored Implants. A Finite Element Analysis

1Matías Guelfi, 2David Fuks, 3María Constanza Ibáñez, 4Juan Carlos Ibáñez
1Private Practice Dentist and Student of the Career of Specialization in Oral Implantology at the Faculty of Medicine, Catholic University of Córdoba, Argentina
2,3Associated Professor the Career of Specialization in Oral Implantology at the Faculty of Medicine, Catholic University of Córdoba, Argentina
4Dr. in Dentistry, Director and Professor of the Career of Specialization in Oral Implantology at the Faculty of Medicine, Catholic University of Córdoba, Argentina


ABSTRACT: 

Objective: To analyze by means of a 3D finite element model the effect of anchoring dental implants in one or two cortical.
Materials and Methods: An in vitro experimental investigation was performed using Finite Elements Analysis. Six conical implants of three different designs and different lengths were designed and placed in a 3D model of the anterior maxilla with type III bone, anchoring a first group of implants only in the occlusal cortical of the bone, while in a second group the apex of the implants was anchored in the cortex of the nasal passages too, so they become monocortical or bicortical anchored. Micromovements of the implants in the bone were generated by simulating a 60-degree inclined force applied at the abutment level with 170 Ncm and 700 Ncm. Amount of micromovements were measured.
Results: Micromovements obtained when the implants were monocortical anchorage and subjected to forces of 170 Ncm, were similar for all the implants (average 27.4um). Whereas with forces of 700 Ncm, the micro-movements increased in all cases. (average 113.49 µm.) Micromovements decreased in all implants when bicortical anchorage was used, both when applying 170Ncm forces (average 8.58 µm) or applying 700Ncm forces (average 34.71µm). In relation to length, short implants showed less micromotion.
Conclusion: According to the results obtained, bicortical anchoring reduces the micromotion of conical implants especially when they are subjected to parafunctional forces and in implants of greater length, ensuring levels of micromotion more compatible with osseointegration, at least in a three-dimensional simulation through FEA.

KEYWORDS:

Bicortical anchorage, Finite Element Analysis, Micromotion

 

REFERENCES :

1) Fawad J, Hameeda Bashir A, Roberto C, Georgios E. R. Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation. Interv Med Appl Sci. 2013 Dec; 5(4): 162–167.
2) Molly L. Bone density and primary stability in implant therapy. Clin. Oral Imp. Res., 17 (Suppl. 2), 2006; 124–135
3) Trisi P, De Benedittis S, Perfetti G, Berardi D. Primary stability, insertion torque and bone density of cylindric implant ad modum Branemark: is there a relationship? An in vitro study. Clin Oral Implants Res. 2011 May;22(5):567-70
4) Trisi P, Perfetti G, Baldoni E, Berardi D, Colagiovanni. M, Scogna G. Implant micromotion is related to peak insertion torque and bone density. Clin. Oral Impl. Res. 20, 2009; 467–471.
5) Meredith N, Alleyne D, Cawley P. Quantitative determination of stability of the implant- tissue interface using resonance frequency analysis. Clin Oral Impl Res; 1996, 7: 261-267.
6) Akca K, Chang TL, Tekdemir I, Fanuscu MI. Biomechanical aspects of initial intraosseous stability and implant design: a quantitative micro-morphometric analysis. Clin Oral Implants Res 2006; 17:465–472.
7) Sugiura T, Yamamoto K, Horita S, Murakami K, Tsutsumi S, Kirita T. The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis. J Periodontal Implant Sci. 2016 Jun;46(3):152-65
8) Klein D, Karl M. Effect of Model Parameters on Finite Element Analysis of Micromotions in Implant Dentistry. J Oral Implantol. 2013 Feb;39(1):23-9
9) Brunski JB. Biomechanical factors affecting the bone-dental implant interface. Clin Mater. 1992;10(3):153-201.
10) Pilliar RM, Lee JM, Maniatopoulos C. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop Relat Res. 1986 Jul;(208):108-13
11) Desai SR, Singh R, Karthikeyan I. 2D FEA of evaluation of micromovements and stresses at bone-implant interface in immediately loaded tapered implants in the posterior maxilla. J Indian Soc Periodontol. 2013 Sep;17(5):637-43
12) Szmukler-Moncler S, Salama H, Reingewirtz Y, Dubruille JH. Timing of loading and effect of micromotion on bone-dental implant interface: review of experimental literature. J Biomed Mater Res. 1998 Summer;43(2):192-203. Review.
13) Werner Winter,1 Daniel Klein,1 and Matthias Karl. The influence of micro-motion on the tissue differentiation around immediately loaded cylindrical turned titanium implants.
14) Wang K, Li DH, Guo JF, Liu BL, Shi SQ. Effects of buccal bicortical anchorages on primary stability of dental implants:a numerical approach of natural frequency analysis. J Oral Rehabil. 2009 Apr;36(4):284-91
15) Javed F, Romanos GE. The role of primary stability for successful immediate loading of dental implants. A literature review. J Dent. 2010 Aug;38(8):612-20.
16) Lekholm U, Zarb GA: Patient selection and preparation. Tissue integrated prostheses; osseointegration in clinical dentistry. Edited by Branemark PI, Zarb GA, Albrektsson T. Quintessence Publishing Company. 1985: 199-209.
17) Jaffin RA, Berman CL. The excessive loss of Branemark fixtures in type IV bone: a 5year analysis. J Periodontol. 1991 Jan;62(1):2-4.
18) Ulm C, Kneissel M, Schedle A, Solar P, Matejka M, Schneider B, Donath K. Characteristic features of trabecular bone in edentulous maxillae. Clin Oral Implants Res. 1999 Dec;10(6):459-67.
19) Jacobs R: Preoperative radiologic planning of implant surgery in compromised patients. Periodontol 2000 33:12, 2003.
20) Garg AK: Success of dental implants in the geriatric patient. Dent Implantol Update 13:25, 2002
21) Alghamdi H, Anand PS, Anil S. (2011). Undersized Implant Site Preparation to Enhance Primary Implant Stability in Poor Bone Density: A Prospective Clinical Study. Journal of Oral and Maxillofacial Surgery, 69(12), e506–e512.
doi: 10.1016/j.joms.2011.08.007
22) Brånemark PI, Adell R, Albrektsson T, Lekholm U, Lindström J, Rockler B. An experimental and clinical study of osseointegrated implants penetrating the nasal cavity and maxillary sinus. J Oral Maxillofac Surg. 1984 Aug;42(8):497-505.
23) Ahn SJ, Leesungbok R, Lee SW, Heo YK, Kang KL. Differences in implant stability associated with various methods of preparation of the implant bed: an in vitro study. J Prosthet Dent. 2012 Jun;107(6):366-72.
24) Yan X, Zhang X, Chi W, Ai H, Wu L. Association between implant apex and sinus floor in posterior maxilla dental implantation: A three-dimensional finite element analysis. Exp Ther Med 2015 Mar;9(3):868-876
25) Sotto-Maior BS, Lima Cde A, Senna PM, Camargos Gde V, Del Bel Cury AA. Biomechanical evaluation of subcrestal dental implants with different bone anchorages. Braz Oral Res.2014;28
26) Nappe Abaroa CE, Montoya Bacigalupo C2. Comparative Study of the Effect of the Macroscopic Design in the Primary Stability of the Osseointegrated Implant. Rev. Clin Periodoncia Implantol Rehabil. Oral Vol. 1 (1); 17-22, 2008.
27) Pedersen KN, Haanes HR, Faehn O. Subperiosteal transmucosal porous ceramic/titanium implants. Clinical experience from three cases. Int J Oral Surg. 1979 Oct;8(5):349-55.
28) ResearchGate[Internet]. Grignola Rial E, Juaneda MA, Ibañez MC, Ibañez JC. Evaluación del comportamiento de implantes ptérigo-maxilares de doble grabado ácido: seguimiento de 1 a 10 años. 2019. Disponible en: https://www.researchgate.net/publication/337902140_Evaluacion_del_comportamient o_de_implantes_pterigomaxilares_de_doble_grabado_acido_seguimiento_de_1_a_10_anos.
DOI: 10.13140/RG.2.2.22458.75201
29) Watzak G, Zechner W, Ulm C, Tangl S, Tepper G, Watzek G. Histologic and histomorphometric analysis of three types of dental implants following 18 months of occlusal loading: a preliminary study in baboons. Clin. Oral Impl. Res. 16, 2005; 408– 416
30) Gallardo S, Ibañez MC. Ibañez JC. Correlation between ISQ and Insertion Torque values using double acid-etched implants. J Osseointegr 2016;8(3):29-36.
31) Verri FR, Santiago Júnior JF, Almeida DA, Verri AC, Batista VE, Lemos CA, Noritomi PY, Pellizzer EP. Three-Dimensional Finite Element Analysis of Anterior Single Implant-Supported Prostheses with Different Bone Anchorages. ScientificWorldJournal 2015; 2015:321528
32) Van Staden RC, Guan H, Loo YC. Application of the finite element method in dental implant research. Comput Methods Biomech Biomed Engin. 2006 Aug;9(4):257-70
33) DeTolla DH, Andreana S, Patra A, Buhite R, Comella B. Role of the finite element model in dental implants. J Oral Implantol. 2000;26(2):77-81. Review.
34) Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1998 Feb;31(2):125-33.
35) Norton MR, Gamble C. Bone classification: an objective scale of bone density using the computerized tomography scan. Clin Oral Implants Res. 2001 Feb;12(1):79-84.
36) M Herrero-Climent , P López-Jarana , B F Lemos, F J Gil , C Falcão, J V RíosSantos , B Ríos-Carrasco. . Relevant Design Aspects to Improve the Stability of Titanium Dental Implants. Materials (Basel) . 2020 Apr 18;13(8):1910. doi: 10.3390/ma13081910.
37) Heng-Li Huang 1, Chin-Han Chang, Jui-Ting Hsu, Alison M Fallgatter, Ching-Chang Ko. Comparison of implant body designs and threaded designs of dental implants a 3dimensional finite element analysis. Int J Oral Maxillofac Implants. Jul-Aug 2007;22(4):551-62.
38) Hyo-Sook Ryu, Cheol Namgung, Jong-Ho Lee, Young-Jun Lim. . The influence of thread geometry on implant osseointegration under immediate loading: a literature review. Adv Prosthodont. 2014 Dec; 6(6): 547–554. doi: 10.4047/jap.2014.6.6.547
39) Memari Y, Fattahi P, Fattahi A, Eskandarion S, Rakhshan V. Finite element analysis of stress distribution around short and long implantsin mandibular overdenture treatment. Dent Res J (Isfahan). 2020 Jan 21;17(1):25-33. eCollection 2020 Jan-Feb.
40) Pierrisnard L, Renouard F, Renault P, Barquins M. Influence of implant length and bicortical anchorage on implant stress distribution. Clin Implant Dent Relat Res. 2003;5(4):254-62.
41) Toniollo MB, Macedo AP, Pupim D, Zaparolli D, da Gloria Chiarello de Mattos M. Finite Element Analysis of Bone Stress in the Posterior Mandible Using Regular and Short Implants, in the Same Context, with Splinted and Nonsplinted Prostheses.Int J Oral Maxillofac Implants. 2017 Jul/Aug;32(4):e199-e206.
42) Jomjunyong K, Rungsiyakull P, Rungsiyakull C, Aunmeungtong W, Chantaramungkorn M, Khongkhunthian P. Stress distribution of various designs of prostheses on short implants or standard implants in posterior maxilla: a three dimensional finite element analysis. Oral Implantol (Rome). 2017 Jan 21;10(4):369-380.

  • Share

Leave a Reply

Your email address will not be published. Required fields are marked *