The Diagnostic Histopathological Techniques of Prostate Cancer

  • Home
  • The Diagnostic Histopathological Techniques of Prostate Cancer

The Diagnostic Histopathological Techniques of Prostate Cancer

1Noor Hadi Hassan, 2Hadeel S. Hadi, 3Rasha A.H. Alathary, 4Ali A. Al-fahham
1Al-Furat Al-Awsat Technical University, Iraq
2,3College of Science, University Of Al-Qadisiyah, Al-Qadisiyah, Iraq
4Faculty of Nursing, University of Kufa, Iraq


ABSTRACT:

The histology of the prostate is critical for understanding both normal prostate function and the pathogenesis of prostate cancer. The prostate gland comprises a complex architecture that includes a functional secretory epithelium, a basal epithelium, and a supporting stroma with a variety of cell types. Prostate adenocarcinoma is the most common form of prostate cancer, characterized by acinar-type architecture. The consistent ranking of prostate cancer as a leading cause of cancer diagnosis and mortality reflects an urgent need for ongoing research into its etiology, risk factors, and effective treatment modalities. This review article cast a light on the diagnostic histopathological techniques of prostate cancer. 

 

REFERENCES :

1) Ahdoot, M.., Wilbur, Andrew R., Reese, Sarah E., Lebastchi, A.., Mehralivand, Sherif., Gomella, Patrick T.., Bloom, Jonathan B., Gurram, S.., Siddiqui, M.., Pinsky, P.., Parnes, H.., Linehan, W.., Merino, M.., Choyke, P.., Shih, J.., Turkbey, B.., Wood, B.., & Pinto, P.. (2020). MRI-Targeted, Systematic, and Combined Biopsy for Prostate Cancer Diagnosis.. The New England journal of medicine , 382 10 , 917-928 .

http://doi.org/10.1056/nejmoa1910038
2) Beltran, H.., Romanel, A.., Conteduca, V.., Casiraghi, Nicola., Sigouros, M.., Franceschini, G.., Orlando, F.., Fedrizzi, T.., Ku, Sheng-Yu., Dann, Emma., Alonso, A.., Mosquera, J.., Sboner, A.., Xiang, J.., Elemento, O.., Nanus, D.., Tagawa, S.., Benelli, M.., & Demichelis, F.. (2020). Circulating tumor DNA profile recognizes transformation to castration-resistant neuroendocrine prostate cancer.. The Journal of clinical investigation . http://doi.org/10.1172/JCI131041
3) Bianchi-Frias, D.., Vakar‐López, F.., Coleman, Ilsa M., Plymate, S.., Reed, M.., & Nelson, P.. (2010). The Effects of Aging on the Molecular and Cellular Composition of the Prostate Microenvironment. PLoS ONE , 5
. http://doi.org/10.1371/journal.pone.0012501
4) Blom, Sami., Paavolainen, L.., Bychkov, Dmitrii., Turkki, Riku., Mäki-Teeri, Petra., Hemmes, A.., Välimäki, K.., Lundin, J.., Kallioniemi, O.., & Pellinen, T.. (2017). Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Scientific Reports , 7 . http://doi.org/10.1038/s41598-017-15798-4
5) Bulten, W.., Bándi, Péter., Hoven, Jeffrey., Loo, Rob van de., Lotz, J.., Weiss, Nick., Laak, J.., Ginneken, B.., Kaa, C. Hulsbergen–van de., & Litjens, G.. (2018). Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard. Scientific Reports , 9 . http://doi.org/10.1038/s41598-018-37257-4
6) Busse, M.., Müller, Mark., Kimm, M.., Ferstl, Simone., Allner, S.., Achterhold, K.., Herzen, J.., & Pfeiffer, F.. (2018). Three-dimensional virtual histology enabled through cytoplasm-specific X-ray stain for microscopic and nanoscopic computed tomography. Proceedings of the National Academy of Sciences , 115 , 2293 – 2298 . http://doi.org/10.1073/pnas.1720862115
7) Cool, D.., Zhang, Xuli., Romagnoli, C.., Izawa, J.., Romano, W.., & Fenster, A.. (2015). Evaluation of MRI-TRUS fusion versus cognitive registration accuracy for MRI-targeted, TRUS-guided prostate biopsy.. AJR. American journal of roentgenology , 204 1 , 83-91 . http://doi.org/10.2214/AJR.14.12681
8) Cooper, C.., Eeles, R.., Wedge, D.., Loo, P. Van., Gundem, G.., Alexandrov, L.., Kremeyer, B.., Butler, A.., Lynch, A.., Camacho, Niedzica., Massie, C.., Kay, J.., Luxton, Hayley J.., Edwards, S.., Kote-Jarai, Z.., Dennis, N.., Merson, S.., Leongamornlert, D.., Zamora, J.., Corbishley, C.., Thomas, Sarah., Nik-Zainal, S.., Ramakrishna, Manasa., O’Meara, S.., Matthews, L.., Clark, Jeremy., Hurst, R.., Mithen, R.., Bristow, R.., Boutros, P.., Fraser, M.., Cooke, S.., Raine, K.., Jones, David., Menzies, A.., Stebbings, L.., Hinton, Jonathan., Teague, J.., Mclaren, Stuart., Mudie, L.., Hardy, Claire W.., Anderson, Elizabeth., Joseph, O.., Goody, V.., Robinson, B.., Maddison, M.., Gamble, Stephen J.., Greenman, C.., Berney, D.., Hazell, S.., Livni, N.., Fisher, C.., Ogden, C.., Kumar, Pardeep., Thompson, A.., Woodhouse, C.., Nicol, D.., Mayer, E.., Dudderidge, T.., Shah, N.., Gnanapragasam, V.., Voet, T.., Campbell, P.., Futreal, A.., Easton, D.., Warren, A.., Foster, C.., Stratton, M.., Whitaker, H.., McDermott, U.., Brewer, D.., & Neal, D.. (2015). Analysis of the Genetic Phylogeny of Multifocal Prostate Cancer Identifies Multiple Independent Clonal Expansions in Neoplastic and Morphologically Normal Prostate Tissue. Nature genetics , 47 , 367 – 372 . http://doi.org/10.1038/ng.3221
9) Drost, J.., Karthaus, W.., Gao, D.., Driehuis, E.., Sawyers, C.., Chen, Yu., & Clevers, H.. (2016). Organoid culture systems for prostate epithelial tissue and prostate cancer tissue. Nature protocols , 11 , 347 – 358 . http://doi.org/10.1038/nprot.2016.006
10) Erickson, A.., He, Mengxiao., Berglund, E.., Marklund, M.., Mirzazadeh, R.., Schultz, N.., Kvastad, L.., Andersson, Alma., Bergenstråhle, L.., Bergenstråhle, J.., Larsson, L.., Galicia, Leire Alonso., Shamikh, A.., Basmaci, Elisa., Ståhl, T. Díaz de., Rajakumar, Timothy., Doultsinos, Dimitrios., Thrane, K.., Ji, A.., Khavari, P.., Tarish, F.., Tanoglidi, A.., Maaskola, J.., Colling, R.., Mirtti, T.., Hamdy, F.., Woodcock, D.., Helleday, T.., Mills, I.., Lamb, A.., & Lundeberg, J.. (2022). Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature , 608 , 360 – 367 . http://doi.org/10.1038/s41586-022-05023-2
11) Giesel, F.., Hadaschik, B.., Cardinale, J.., Radtke, J.., Vinsensia, M.., Lehnert, W.., Kesch, C.., Tolstov, Y.., Singer, S.., Grabe, Niels., Duensing, S.., Schäfer, M.., Neels, O.., Mier, W.., Haberkorn, U.., Kopka, K.., & Kratochwil, C.. (2016). F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. European Journal of Nuclear Medicine and Molecular Imaging , 44 , 678 – 688 . http://doi.org/10.1007/s00259-016-3573-4
12) Hansen, N.., Kesch, C.., Barrett, T.., Koo, B.., Radtke, J.., Bonekamp, D.., Schlemmer, H.., Warren, A.., Wieczorek, K.., Hohenfellner, M.., Kastner, C.., & Hadaschik, B.. (2017). Multicentre evaluation of targeted and systematic biopsies using magnetic resonance and ultrasound image‐fusion guided transperineal prostate biopsy in patients with a previous negative biopsy. BJU International , 120 . http://doi.org/10.1111/bju.13711
13) He, Jiuming., Sun, Chenglong., Li, Tie-gang., Luo, Zhigang., Huang, Luojiao., Song, Xiaowei., Li, Xin., & Abliz, Z.. (2018). A Sensitive and Wide Coverage Ambient Mass Spectrometry Imaging Method for Functional Metabolites Based Molecular Histology. Advanced Science , 5 . http://doi.org/10.1002/advs.201800250
14) Heidenreich, A.., Bastian, P.., Bellmunt, J.., Bolla, M.., Joniau, S.., Kwast, T.., Mason, M.., Matveev, V.., Wiegel, T.., Zattoni, F.., & Mottet, N.. (2014). EAU guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent-update 2013.. European urology , 65 1 , 124-37 . http://doi.org/10.1016/j.eururo.2013.09.046
15) Hofman, M.., Hicks, R.., Maurer, T.., & Eiber, M.. (2018). Prostate-specific Membrane Antigen PET: Clinical Utility in Prostate Cancer, Normal Patterns, Pearls, and Pitfalls.. Radiographics : a review publication of the Radiological Society of North America, Inc , 38 1 , 200-217 . http://doi.org/10.1148/rg.2018170108
16) Karavitakis, M.., Winkler, Mathias., Abel, Paul D.., Livni, N.., Beckley, Ian., & Ahmed, Hashim U.. (2011). Histological characteristics of the index lesion in whole-mount radical prostatectomy specimens: implications for focal therapy. Prostate Cancer and Prostatic Diseases , 14 , 46-52 . http://doi.org/10.1038/pcan.2010.16
17) Li, Yuqian., Wu, Junmin., & Wu, Qisong. (2019). Classification of Breast Cancer Histology Images Using Multi-Size and Discriminative Patches Based on Deep Learning. IEEE Access , 7 , 21400-21408 . http://doi.org/10.1109/ACCESS.2019.2898044
18) Lopes, Renaud., Ayache, Antoine., Makni, N.., Puech, Philippe A.., Villers, A.., Mordon, Serge., & Betrouni, N.. (2010). Prostate cancer characterization on MR images using fractal features.. Medical physics , 38 1 , 83-95 . http://doi.org/10.1118/1.3521470
19) Mosquera-Lopez, Clara., Agaian, S.., Velez-Hoyos, A.., & Thompson, I.. (2015). Computer-Aided Prostate Cancer Diagnosis From Digitized Histopathology: A Review on Texture-Based Systems. IEEE Reviews in Biomedical Engineering , 8 , 98-113 . http://doi.org/10.1109/RBME.2014.2340401
20) Mottet, N.., Bergh, R. V. D. van den., Briers, E.., Broeck, T. Van den., Cumberbatch, M.., Santis, M. D. De., Fanti, S.., Fossati, N.., Gandaglia, G.., Gillessen, S.., Grivas, N.., Grummet, J.., Henry, A.., Kwast, T. H. van der., Lam, T.., Lardas, M.., Liew, M.., Mason, M.., Moris, L.., Oprea-Lager, D.., Poel, H. G. van der., Rouvière, O.., Schoots, I.., Tilki, D.., Wiegel, T.., Willemse, P.., & Cornford, P.. (2020). EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent.. European urology . http://doi.org/10.1016/j.eururo.2020.09.042
21) Nagpal, K.., Foote, Davis., Liu, Yun., Chen, Po-Hsuan Cameron., Wulczyn, Ellery., Tan, Fraser., Olson, Niels., Smith, Jenny L.., Mohtashamian, Arash., Wren, James H.., Corrado, G.., MacDonald, Robert., Peng, L.., Amin, M.., Evans, A.., Sangoi, A.., Mermel, C.., Hipp, J.., & Stumpe, Martin C.. (2018). Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digital Medicine , 2 . http://doi.org/10.1038/s41746-019-0112-2
22) Nguyen, Kien., Sarkar, A.., & Jain, Anil K.. (2012). Structure and Context in Prostatic Gland Segmentation and Classification. Medical image computing and computer-assisted intervention : MICCAI … International Conference on Medical Image Computing and Computer-Assisted Intervention , 15 Pt 1 , 115-23 . http://doi.org/10.1007/978-3-642-33415-3_15
23) Panagiotaki, Eleftheria., Chan, R.., Dikaios, Nikolaos., Ahmed, H.., O’Callaghan, James P.., Freeman, A.., Atkinson, D.., Punwani, S.., Hawkes, D.., & Alexander, D.. (2015). Microstructural Characterization of Normal and Malignant Human Prostate Tissue With Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumours Magnetic Resonance Imaging. Investigative Radiology , 50 , 218–227 . http://doi.org/10.1097/RLI.0000000000000115
24) Rahib, L.., Smith, Benjamin D.., Aizenberg, R.., Rosenzweig, A.., Fleshman, Julie M., & Matrisian, L.. (2014). Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States.. Cancer research , 74 11 , 2913-21 . http://doi.org/10.1158/0008-5472.CAN-14-0155
25) Stoyanova, Tanya., Cooper, Aaron R., Drake, J.., Liu, X.., Armstrong, A.., Pienta, K.., Zhang, Hong., Kohn, D.., Huang, Jiaoti., Witte, O.., & Goldstein, A.. (2013). Prostate cancer originating in basal cells progresses to adenocarcinoma propagated by luminal-like cells. Proceedings of the National Academy of Sciences , 110 , 20111 – 20116 . http://doi.org/10.1073/pnas.1320565110
26) Sung, H.., Ferlay, J.., Siegel, R.., Laversanne, M.., Soerjomataram, I.., Jemal, A.., & Bray, F.. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians , 71 , 209 – 249 . http://doi.org/10.3322/caac.21660
27) Vignati, A.., Mazzetti, S.., Giannini, V.., Russo, F.., Bollito, E.., Porpiglia, F.., Stasi, M.., & Regge, D.. (2015). Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness. Physics in Medicine & Biology , 60 , 2685 – 2701 . http://doi.org/10.1088/0031-9155/60/7/2685
28) Wang, Jing., Wu, Chen‐Jiang., Bao, Mei‐Ling., Zhang, Jing., Wang, Xiao‐Ning., & Zhang, Yu-Dong. (2017). Machine learning-based analysis of MR radiomics can help to improve the diagnostic performance of PI-RADS v2 in clinically relevant prostate cancer. European Radiology , 27 , 4082-4090 . http://doi.org/10.1007/s00330-017-4800-5
29) Yao, Hongdou., Zhang, Xuejie., Zhou, Xiaobing., & Liu, Shengyan. (2019). Parallel Structure Deep Neural Network Using CNN and RNN with an Attention Mechanism for Breast Cancer Histology Image Classification. Cancers , 11 . http://doi.org/10.3390/cancers11121901
30) Yu, A.., Badve, Chaitra., Ponsky, L.., Pahwa, Shivani., Dastmalchian, S.., Rogers, Matthew., Jiang, Yun., Margevicius, S.., Schluchter, M.., Tabayoyong, William B.., Abouassaly, R.., McGivney, Debra F.., Griswold, M.., & Gulani, V.. (2017). Development of a Combined MR Fingerprinting and Diffusion Examination for Prostate Cancer.. Radiology , 283 3 , 729-738 . http://doi.org/10.1148/radiol.2017161599
31) Zamboglou, C.., Carles, M.., Fechter, T.., Kiefer, S.., Reichel, Kathrin., Fassbender, T.., Bronsert, P.., Koeber, Goeran., Schilling, O.., Ruf, J.., Werner, M.., Jilg, C.., Baltas, D.., Mix, M.., & Grosu, A.. (2019). Radiomic features from PSMA PET for non-invasive intraprostatic tumor discrimination and characterization in patients with intermediate- and high-risk prostate cancer – a comparison study with histology reference. Theranostics , 9 , 2595 – 2605 . http://doi.org/10.7150/thno.32376
32) Zamboglou, C.., Schiller, F.., Fechter, T.., Wieser, Gesche., Jilg, C.., Chirindel, A.., Salman, N.., Drendel, V.., Werner, M.., Mix, M.., Meyer, P.., & Grosu, A.. (2016). 68Ga-HBED-CC-PSMA PET/CT Versus Histopathology in Primary Localized Prostate Cancer: A Voxel-Wise Comparison. Theranostics , 6 , 1619 – 1628 . http://doi.org/10.7150/thno.15344

  • Share

Leave a Reply

Your email address will not be published. Required fields are marked *